Step |
Hyp |
Ref |
Expression |
1 |
|
limsuc |
|- ( Lim B -> ( ( rank ` A ) e. B <-> suc ( rank ` A ) e. B ) ) |
2 |
1
|
adantl |
|- ( ( A e. _V /\ Lim B ) -> ( ( rank ` A ) e. B <-> suc ( rank ` A ) e. B ) ) |
3 |
|
pweq |
|- ( x = A -> ~P x = ~P A ) |
4 |
3
|
fveq2d |
|- ( x = A -> ( rank ` ~P x ) = ( rank ` ~P A ) ) |
5 |
|
fveq2 |
|- ( x = A -> ( rank ` x ) = ( rank ` A ) ) |
6 |
|
suceq |
|- ( ( rank ` x ) = ( rank ` A ) -> suc ( rank ` x ) = suc ( rank ` A ) ) |
7 |
5 6
|
syl |
|- ( x = A -> suc ( rank ` x ) = suc ( rank ` A ) ) |
8 |
4 7
|
eqeq12d |
|- ( x = A -> ( ( rank ` ~P x ) = suc ( rank ` x ) <-> ( rank ` ~P A ) = suc ( rank ` A ) ) ) |
9 |
|
vex |
|- x e. _V |
10 |
9
|
rankpw |
|- ( rank ` ~P x ) = suc ( rank ` x ) |
11 |
8 10
|
vtoclg |
|- ( A e. _V -> ( rank ` ~P A ) = suc ( rank ` A ) ) |
12 |
11
|
eleq1d |
|- ( A e. _V -> ( ( rank ` ~P A ) e. B <-> suc ( rank ` A ) e. B ) ) |
13 |
12
|
adantr |
|- ( ( A e. _V /\ Lim B ) -> ( ( rank ` ~P A ) e. B <-> suc ( rank ` A ) e. B ) ) |
14 |
2 13
|
bitr4d |
|- ( ( A e. _V /\ Lim B ) -> ( ( rank ` A ) e. B <-> ( rank ` ~P A ) e. B ) ) |
15 |
|
fvprc |
|- ( -. A e. _V -> ( rank ` A ) = (/) ) |
16 |
|
pwexb |
|- ( A e. _V <-> ~P A e. _V ) |
17 |
|
fvprc |
|- ( -. ~P A e. _V -> ( rank ` ~P A ) = (/) ) |
18 |
16 17
|
sylnbi |
|- ( -. A e. _V -> ( rank ` ~P A ) = (/) ) |
19 |
15 18
|
eqtr4d |
|- ( -. A e. _V -> ( rank ` A ) = ( rank ` ~P A ) ) |
20 |
19
|
eleq1d |
|- ( -. A e. _V -> ( ( rank ` A ) e. B <-> ( rank ` ~P A ) e. B ) ) |
21 |
20
|
adantr |
|- ( ( -. A e. _V /\ Lim B ) -> ( ( rank ` A ) e. B <-> ( rank ` ~P A ) e. B ) ) |
22 |
14 21
|
pm2.61ian |
|- ( Lim B -> ( ( rank ` A ) e. B <-> ( rank ` ~P A ) e. B ) ) |