Step |
Hyp |
Ref |
Expression |
1 |
|
rankxpl.1 |
|- A e. _V |
2 |
|
rankxpl.2 |
|- B e. _V |
3 |
|
mapsspw |
|- ( A ^m B ) C_ ~P ( B X. A ) |
4 |
2 1
|
xpex |
|- ( B X. A ) e. _V |
5 |
4
|
pwex |
|- ~P ( B X. A ) e. _V |
6 |
5
|
rankss |
|- ( ( A ^m B ) C_ ~P ( B X. A ) -> ( rank ` ( A ^m B ) ) C_ ( rank ` ~P ( B X. A ) ) ) |
7 |
3 6
|
ax-mp |
|- ( rank ` ( A ^m B ) ) C_ ( rank ` ~P ( B X. A ) ) |
8 |
4
|
rankpw |
|- ( rank ` ~P ( B X. A ) ) = suc ( rank ` ( B X. A ) ) |
9 |
2 1
|
rankxpu |
|- ( rank ` ( B X. A ) ) C_ suc suc ( rank ` ( B u. A ) ) |
10 |
|
uncom |
|- ( B u. A ) = ( A u. B ) |
11 |
10
|
fveq2i |
|- ( rank ` ( B u. A ) ) = ( rank ` ( A u. B ) ) |
12 |
|
suceq |
|- ( ( rank ` ( B u. A ) ) = ( rank ` ( A u. B ) ) -> suc ( rank ` ( B u. A ) ) = suc ( rank ` ( A u. B ) ) ) |
13 |
11 12
|
ax-mp |
|- suc ( rank ` ( B u. A ) ) = suc ( rank ` ( A u. B ) ) |
14 |
|
suceq |
|- ( suc ( rank ` ( B u. A ) ) = suc ( rank ` ( A u. B ) ) -> suc suc ( rank ` ( B u. A ) ) = suc suc ( rank ` ( A u. B ) ) ) |
15 |
13 14
|
ax-mp |
|- suc suc ( rank ` ( B u. A ) ) = suc suc ( rank ` ( A u. B ) ) |
16 |
9 15
|
sseqtri |
|- ( rank ` ( B X. A ) ) C_ suc suc ( rank ` ( A u. B ) ) |
17 |
|
rankon |
|- ( rank ` ( B X. A ) ) e. On |
18 |
17
|
onordi |
|- Ord ( rank ` ( B X. A ) ) |
19 |
|
rankon |
|- ( rank ` ( A u. B ) ) e. On |
20 |
19
|
onsuci |
|- suc ( rank ` ( A u. B ) ) e. On |
21 |
20
|
onsuci |
|- suc suc ( rank ` ( A u. B ) ) e. On |
22 |
21
|
onordi |
|- Ord suc suc ( rank ` ( A u. B ) ) |
23 |
|
ordsucsssuc |
|- ( ( Ord ( rank ` ( B X. A ) ) /\ Ord suc suc ( rank ` ( A u. B ) ) ) -> ( ( rank ` ( B X. A ) ) C_ suc suc ( rank ` ( A u. B ) ) <-> suc ( rank ` ( B X. A ) ) C_ suc suc suc ( rank ` ( A u. B ) ) ) ) |
24 |
18 22 23
|
mp2an |
|- ( ( rank ` ( B X. A ) ) C_ suc suc ( rank ` ( A u. B ) ) <-> suc ( rank ` ( B X. A ) ) C_ suc suc suc ( rank ` ( A u. B ) ) ) |
25 |
16 24
|
mpbi |
|- suc ( rank ` ( B X. A ) ) C_ suc suc suc ( rank ` ( A u. B ) ) |
26 |
8 25
|
eqsstri |
|- ( rank ` ~P ( B X. A ) ) C_ suc suc suc ( rank ` ( A u. B ) ) |
27 |
7 26
|
sstri |
|- ( rank ` ( A ^m B ) ) C_ suc suc suc ( rank ` ( A u. B ) ) |