Metamath Proof Explorer


Theorem rankonid

Description: The rank of an ordinal number is itself. Proposition 9.18 of TakeutiZaring p. 79 and its converse. (Contributed by NM, 14-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankonid
|- ( A e. dom R1 <-> ( rank ` A ) = A )

Proof

Step Hyp Ref Expression
1 rankonidlem
 |-  ( A e. dom R1 -> ( A e. U. ( R1 " On ) /\ ( rank ` A ) = A ) )
2 1 simprd
 |-  ( A e. dom R1 -> ( rank ` A ) = A )
3 id
 |-  ( ( rank ` A ) = A -> ( rank ` A ) = A )
4 rankdmr1
 |-  ( rank ` A ) e. dom R1
5 3 4 eqeltrrdi
 |-  ( ( rank ` A ) = A -> A e. dom R1 )
6 2 5 impbii
 |-  ( A e. dom R1 <-> ( rank ` A ) = A )