Description: The rank of an ordinal number is itself. Proposition 9.18 of TakeutiZaring p. 79 and its converse. (Contributed by NM, 14-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rankonid | |- ( A e. dom R1 <-> ( rank ` A ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankonidlem | |- ( A e. dom R1 -> ( A e. U. ( R1 " On ) /\ ( rank ` A ) = A ) ) |
|
2 | 1 | simprd | |- ( A e. dom R1 -> ( rank ` A ) = A ) |
3 | id | |- ( ( rank ` A ) = A -> ( rank ` A ) = A ) |
|
4 | rankdmr1 | |- ( rank ` A ) e. dom R1 |
|
5 | 3 4 | eqeltrrdi | |- ( ( rank ` A ) = A -> A e. dom R1 ) |
6 | 2 5 | impbii | |- ( A e. dom R1 <-> ( rank ` A ) = A ) |