Description: The rank of an ordinal number is itself. Proposition 9.18 of TakeutiZaring p. 79 and its converse. (Contributed by NM, 14-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankonid | |- ( A e. dom R1 <-> ( rank ` A ) = A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rankonidlem | |- ( A e. dom R1 -> ( A e. U. ( R1 " On ) /\ ( rank ` A ) = A ) ) | |
| 2 | 1 | simprd | |- ( A e. dom R1 -> ( rank ` A ) = A ) | 
| 3 | id | |- ( ( rank ` A ) = A -> ( rank ` A ) = A ) | |
| 4 | rankdmr1 | |- ( rank ` A ) e. dom R1 | |
| 5 | 3 4 | eqeltrrdi | |- ( ( rank ` A ) = A -> A e. dom R1 ) | 
| 6 | 2 5 | impbii | |- ( A e. dom R1 <-> ( rank ` A ) = A ) |