Description: The rank of an unordered pair. Part of Exercise 30 of Enderton p. 207. (Contributed by NM, 28-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ranksn.1 | |- A e. _V | |
| rankun.2 | |- B e. _V | ||
| Assertion | rankpr | |- ( rank ` { A , B } ) = suc ( ( rank ` A ) u. ( rank ` B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ranksn.1 | |- A e. _V | |
| 2 | rankun.2 | |- B e. _V | |
| 3 | unir1 | |- U. ( R1 " On ) = _V | |
| 4 | 1 3 | eleqtrri | |- A e. U. ( R1 " On ) | 
| 5 | 2 3 | eleqtrri | |- B e. U. ( R1 " On ) | 
| 6 | rankprb |  |-  ( ( A e. U. ( R1 " On ) /\ B e. U. ( R1 " On ) ) -> ( rank ` { A , B } ) = suc ( ( rank ` A ) u. ( rank ` B ) ) ) | |
| 7 | 4 5 6 | mp2an |  |-  ( rank ` { A , B } ) = suc ( ( rank ` A ) u. ( rank ` B ) ) |