Metamath Proof Explorer


Theorem rankpw

Description: The rank of a power set. Part of Exercise 30 of Enderton p. 207. (Contributed by NM, 22-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis rankpw.1
|- A e. _V
Assertion rankpw
|- ( rank ` ~P A ) = suc ( rank ` A )

Proof

Step Hyp Ref Expression
1 rankpw.1
 |-  A e. _V
2 unir1
 |-  U. ( R1 " On ) = _V
3 1 2 eleqtrri
 |-  A e. U. ( R1 " On )
4 rankpwi
 |-  ( A e. U. ( R1 " On ) -> ( rank ` ~P A ) = suc ( rank ` A ) )
5 3 4 ax-mp
 |-  ( rank ` ~P A ) = suc ( rank ` A )