Metamath Proof Explorer


Theorem rankr1a

Description: A relationship between rank and R1 , clearly equivalent to ssrankr1 and friends through trichotomy, but in Raph's opinion considerably more intuitive. See rankr1b for the subset version. (Contributed by Raph Levien, 29-May-2004)

Ref Expression
Hypothesis rankid.1
|- A e. _V
Assertion rankr1a
|- ( B e. On -> ( A e. ( R1 ` B ) <-> ( rank ` A ) e. B ) )

Proof

Step Hyp Ref Expression
1 rankid.1
 |-  A e. _V
2 1 ssrankr1
 |-  ( B e. On -> ( B C_ ( rank ` A ) <-> -. A e. ( R1 ` B ) ) )
3 rankon
 |-  ( rank ` A ) e. On
4 ontri1
 |-  ( ( B e. On /\ ( rank ` A ) e. On ) -> ( B C_ ( rank ` A ) <-> -. ( rank ` A ) e. B ) )
5 3 4 mpan2
 |-  ( B e. On -> ( B C_ ( rank ` A ) <-> -. ( rank ` A ) e. B ) )
6 2 5 bitr3d
 |-  ( B e. On -> ( -. A e. ( R1 ` B ) <-> -. ( rank ` A ) e. B ) )
7 6 con4bid
 |-  ( B e. On -> ( A e. ( R1 ` B ) <-> ( rank ` A ) e. B ) )