| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rankr1ai |  |-  ( A e. ( R1 ` B ) -> ( rank ` A ) e. B ) | 
						
							| 2 |  | r1funlim |  |-  ( Fun R1 /\ Lim dom R1 ) | 
						
							| 3 | 2 | simpri |  |-  Lim dom R1 | 
						
							| 4 |  | limord |  |-  ( Lim dom R1 -> Ord dom R1 ) | 
						
							| 5 | 3 4 | ax-mp |  |-  Ord dom R1 | 
						
							| 6 |  | ordelord |  |-  ( ( Ord dom R1 /\ B e. dom R1 ) -> Ord B ) | 
						
							| 7 | 5 6 | mpan |  |-  ( B e. dom R1 -> Ord B ) | 
						
							| 8 | 7 | adantl |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> Ord B ) | 
						
							| 9 |  | ordsucss |  |-  ( Ord B -> ( ( rank ` A ) e. B -> suc ( rank ` A ) C_ B ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( rank ` A ) e. B -> suc ( rank ` A ) C_ B ) ) | 
						
							| 11 |  | rankidb |  |-  ( A e. U. ( R1 " On ) -> A e. ( R1 ` suc ( rank ` A ) ) ) | 
						
							| 12 |  | elfvdm |  |-  ( A e. ( R1 ` suc ( rank ` A ) ) -> suc ( rank ` A ) e. dom R1 ) | 
						
							| 13 | 11 12 | syl |  |-  ( A e. U. ( R1 " On ) -> suc ( rank ` A ) e. dom R1 ) | 
						
							| 14 |  | r1ord3g |  |-  ( ( suc ( rank ` A ) e. dom R1 /\ B e. dom R1 ) -> ( suc ( rank ` A ) C_ B -> ( R1 ` suc ( rank ` A ) ) C_ ( R1 ` B ) ) ) | 
						
							| 15 | 13 14 | sylan |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( suc ( rank ` A ) C_ B -> ( R1 ` suc ( rank ` A ) ) C_ ( R1 ` B ) ) ) | 
						
							| 16 | 11 | adantr |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> A e. ( R1 ` suc ( rank ` A ) ) ) | 
						
							| 17 |  | ssel |  |-  ( ( R1 ` suc ( rank ` A ) ) C_ ( R1 ` B ) -> ( A e. ( R1 ` suc ( rank ` A ) ) -> A e. ( R1 ` B ) ) ) | 
						
							| 18 | 16 17 | syl5com |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( R1 ` suc ( rank ` A ) ) C_ ( R1 ` B ) -> A e. ( R1 ` B ) ) ) | 
						
							| 19 | 10 15 18 | 3syld |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( rank ` A ) e. B -> A e. ( R1 ` B ) ) ) | 
						
							| 20 | 1 19 | impbid2 |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` B ) <-> ( rank ` A ) e. B ) ) |