Description: A relationship between rank and R1 . See rankr1a for the membership version. (Contributed by NM, 15-Sep-2006) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rankr1b.1 | |- A e. _V |
|
Assertion | rankr1b | |- ( B e. On -> ( A C_ ( R1 ` B ) <-> ( rank ` A ) C_ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankr1b.1 | |- A e. _V |
|
2 | r1fnon | |- R1 Fn On |
|
3 | 2 | fndmi | |- dom R1 = On |
4 | 3 | eleq2i | |- ( B e. dom R1 <-> B e. On ) |
5 | unir1 | |- U. ( R1 " On ) = _V |
|
6 | 1 5 | eleqtrri | |- A e. U. ( R1 " On ) |
7 | rankr1bg | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A C_ ( R1 ` B ) <-> ( rank ` A ) C_ B ) ) |
|
8 | 6 7 | mpan | |- ( B e. dom R1 -> ( A C_ ( R1 ` B ) <-> ( rank ` A ) C_ B ) ) |
9 | 4 8 | sylbir | |- ( B e. On -> ( A C_ ( R1 ` B ) <-> ( rank ` A ) C_ B ) ) |