Metamath Proof Explorer


Theorem rankr1b

Description: A relationship between rank and R1 . See rankr1a for the membership version. (Contributed by NM, 15-Sep-2006) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis rankr1b.1
|- A e. _V
Assertion rankr1b
|- ( B e. On -> ( A C_ ( R1 ` B ) <-> ( rank ` A ) C_ B ) )

Proof

Step Hyp Ref Expression
1 rankr1b.1
 |-  A e. _V
2 r1fnon
 |-  R1 Fn On
3 2 fndmi
 |-  dom R1 = On
4 3 eleq2i
 |-  ( B e. dom R1 <-> B e. On )
5 unir1
 |-  U. ( R1 " On ) = _V
6 1 5 eleqtrri
 |-  A e. U. ( R1 " On )
7 rankr1bg
 |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A C_ ( R1 ` B ) <-> ( rank ` A ) C_ B ) )
8 6 7 mpan
 |-  ( B e. dom R1 -> ( A C_ ( R1 ` B ) <-> ( rank ` A ) C_ B ) )
9 4 8 sylbir
 |-  ( B e. On -> ( A C_ ( R1 ` B ) <-> ( rank ` A ) C_ B ) )