Step |
Hyp |
Ref |
Expression |
1 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
2 |
1
|
simpri |
|- Lim dom R1 |
3 |
|
limsuc |
|- ( Lim dom R1 -> ( B e. dom R1 <-> suc B e. dom R1 ) ) |
4 |
2 3
|
ax-mp |
|- ( B e. dom R1 <-> suc B e. dom R1 ) |
5 |
|
rankr1ag |
|- ( ( A e. U. ( R1 " On ) /\ suc B e. dom R1 ) -> ( A e. ( R1 ` suc B ) <-> ( rank ` A ) e. suc B ) ) |
6 |
4 5
|
sylan2b |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` suc B ) <-> ( rank ` A ) e. suc B ) ) |
7 |
|
r1sucg |
|- ( B e. dom R1 -> ( R1 ` suc B ) = ~P ( R1 ` B ) ) |
8 |
7
|
adantl |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( R1 ` suc B ) = ~P ( R1 ` B ) ) |
9 |
8
|
eleq2d |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` suc B ) <-> A e. ~P ( R1 ` B ) ) ) |
10 |
|
fvex |
|- ( R1 ` B ) e. _V |
11 |
10
|
elpw2 |
|- ( A e. ~P ( R1 ` B ) <-> A C_ ( R1 ` B ) ) |
12 |
9 11
|
bitr2di |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A C_ ( R1 ` B ) <-> A e. ( R1 ` suc B ) ) ) |
13 |
|
rankon |
|- ( rank ` A ) e. On |
14 |
|
limord |
|- ( Lim dom R1 -> Ord dom R1 ) |
15 |
2 14
|
ax-mp |
|- Ord dom R1 |
16 |
|
ordelon |
|- ( ( Ord dom R1 /\ B e. dom R1 ) -> B e. On ) |
17 |
15 16
|
mpan |
|- ( B e. dom R1 -> B e. On ) |
18 |
17
|
adantl |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> B e. On ) |
19 |
|
onsssuc |
|- ( ( ( rank ` A ) e. On /\ B e. On ) -> ( ( rank ` A ) C_ B <-> ( rank ` A ) e. suc B ) ) |
20 |
13 18 19
|
sylancr |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( rank ` A ) C_ B <-> ( rank ` A ) e. suc B ) ) |
21 |
6 12 20
|
3bitr4d |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A C_ ( R1 ` B ) <-> ( rank ` A ) C_ B ) ) |