| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( B = ( rank ` A ) -> B = ( rank ` A ) ) | 
						
							| 2 |  | rankdmr1 |  |-  ( rank ` A ) e. dom R1 | 
						
							| 3 | 1 2 | eqeltrdi |  |-  ( B = ( rank ` A ) -> B e. dom R1 ) | 
						
							| 4 | 3 | a1i |  |-  ( A e. U. ( R1 " On ) -> ( B = ( rank ` A ) -> B e. dom R1 ) ) | 
						
							| 5 |  | elfvdm |  |-  ( A e. ( R1 ` suc B ) -> suc B e. dom R1 ) | 
						
							| 6 |  | r1funlim |  |-  ( Fun R1 /\ Lim dom R1 ) | 
						
							| 7 | 6 | simpri |  |-  Lim dom R1 | 
						
							| 8 |  | limsuc |  |-  ( Lim dom R1 -> ( B e. dom R1 <-> suc B e. dom R1 ) ) | 
						
							| 9 | 7 8 | ax-mp |  |-  ( B e. dom R1 <-> suc B e. dom R1 ) | 
						
							| 10 | 5 9 | sylibr |  |-  ( A e. ( R1 ` suc B ) -> B e. dom R1 ) | 
						
							| 11 | 10 | adantl |  |-  ( ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) -> B e. dom R1 ) | 
						
							| 12 | 11 | a1i |  |-  ( A e. U. ( R1 " On ) -> ( ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) -> B e. dom R1 ) ) | 
						
							| 13 |  | eqss |  |-  ( B = ( rank ` A ) <-> ( B C_ ( rank ` A ) /\ ( rank ` A ) C_ B ) ) | 
						
							| 14 |  | rankr1clem |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( -. A e. ( R1 ` B ) <-> B C_ ( rank ` A ) ) ) | 
						
							| 15 |  | rankr1ag |  |-  ( ( A e. U. ( R1 " On ) /\ suc B e. dom R1 ) -> ( A e. ( R1 ` suc B ) <-> ( rank ` A ) e. suc B ) ) | 
						
							| 16 | 9 15 | sylan2b |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` suc B ) <-> ( rank ` A ) e. suc B ) ) | 
						
							| 17 |  | rankon |  |-  ( rank ` A ) e. On | 
						
							| 18 |  | limord |  |-  ( Lim dom R1 -> Ord dom R1 ) | 
						
							| 19 | 7 18 | ax-mp |  |-  Ord dom R1 | 
						
							| 20 |  | ordelon |  |-  ( ( Ord dom R1 /\ B e. dom R1 ) -> B e. On ) | 
						
							| 21 | 19 20 | mpan |  |-  ( B e. dom R1 -> B e. On ) | 
						
							| 22 | 21 | adantl |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> B e. On ) | 
						
							| 23 |  | onsssuc |  |-  ( ( ( rank ` A ) e. On /\ B e. On ) -> ( ( rank ` A ) C_ B <-> ( rank ` A ) e. suc B ) ) | 
						
							| 24 | 17 22 23 | sylancr |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( rank ` A ) C_ B <-> ( rank ` A ) e. suc B ) ) | 
						
							| 25 | 16 24 | bitr4d |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` suc B ) <-> ( rank ` A ) C_ B ) ) | 
						
							| 26 | 14 25 | anbi12d |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) <-> ( B C_ ( rank ` A ) /\ ( rank ` A ) C_ B ) ) ) | 
						
							| 27 | 13 26 | bitr4id |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) | 
						
							| 28 | 27 | ex |  |-  ( A e. U. ( R1 " On ) -> ( B e. dom R1 -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) ) | 
						
							| 29 | 4 12 28 | pm5.21ndd |  |-  ( A e. U. ( R1 " On ) -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) |