Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( B = ( rank ` A ) -> B = ( rank ` A ) ) |
2 |
|
rankdmr1 |
|- ( rank ` A ) e. dom R1 |
3 |
1 2
|
eqeltrdi |
|- ( B = ( rank ` A ) -> B e. dom R1 ) |
4 |
3
|
a1i |
|- ( A e. U. ( R1 " On ) -> ( B = ( rank ` A ) -> B e. dom R1 ) ) |
5 |
|
elfvdm |
|- ( A e. ( R1 ` suc B ) -> suc B e. dom R1 ) |
6 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
7 |
6
|
simpri |
|- Lim dom R1 |
8 |
|
limsuc |
|- ( Lim dom R1 -> ( B e. dom R1 <-> suc B e. dom R1 ) ) |
9 |
7 8
|
ax-mp |
|- ( B e. dom R1 <-> suc B e. dom R1 ) |
10 |
5 9
|
sylibr |
|- ( A e. ( R1 ` suc B ) -> B e. dom R1 ) |
11 |
10
|
adantl |
|- ( ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) -> B e. dom R1 ) |
12 |
11
|
a1i |
|- ( A e. U. ( R1 " On ) -> ( ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) -> B e. dom R1 ) ) |
13 |
|
eqss |
|- ( B = ( rank ` A ) <-> ( B C_ ( rank ` A ) /\ ( rank ` A ) C_ B ) ) |
14 |
|
rankr1clem |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( -. A e. ( R1 ` B ) <-> B C_ ( rank ` A ) ) ) |
15 |
|
rankr1ag |
|- ( ( A e. U. ( R1 " On ) /\ suc B e. dom R1 ) -> ( A e. ( R1 ` suc B ) <-> ( rank ` A ) e. suc B ) ) |
16 |
9 15
|
sylan2b |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` suc B ) <-> ( rank ` A ) e. suc B ) ) |
17 |
|
rankon |
|- ( rank ` A ) e. On |
18 |
|
limord |
|- ( Lim dom R1 -> Ord dom R1 ) |
19 |
7 18
|
ax-mp |
|- Ord dom R1 |
20 |
|
ordelon |
|- ( ( Ord dom R1 /\ B e. dom R1 ) -> B e. On ) |
21 |
19 20
|
mpan |
|- ( B e. dom R1 -> B e. On ) |
22 |
21
|
adantl |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> B e. On ) |
23 |
|
onsssuc |
|- ( ( ( rank ` A ) e. On /\ B e. On ) -> ( ( rank ` A ) C_ B <-> ( rank ` A ) e. suc B ) ) |
24 |
17 22 23
|
sylancr |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( rank ` A ) C_ B <-> ( rank ` A ) e. suc B ) ) |
25 |
16 24
|
bitr4d |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` suc B ) <-> ( rank ` A ) C_ B ) ) |
26 |
14 25
|
anbi12d |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) <-> ( B C_ ( rank ` A ) /\ ( rank ` A ) C_ B ) ) ) |
27 |
13 26
|
bitr4id |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) |
28 |
27
|
ex |
|- ( A e. U. ( R1 " On ) -> ( B e. dom R1 -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) ) |
29 |
4 12 28
|
pm5.21ndd |
|- ( A e. U. ( R1 " On ) -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) |