| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rankr1ag |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` B ) <-> ( rank ` A ) e. B ) ) | 
						
							| 2 | 1 | notbid |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( -. A e. ( R1 ` B ) <-> -. ( rank ` A ) e. B ) ) | 
						
							| 3 |  | r1funlim |  |-  ( Fun R1 /\ Lim dom R1 ) | 
						
							| 4 | 3 | simpri |  |-  Lim dom R1 | 
						
							| 5 |  | limord |  |-  ( Lim dom R1 -> Ord dom R1 ) | 
						
							| 6 | 4 5 | ax-mp |  |-  Ord dom R1 | 
						
							| 7 |  | ordelon |  |-  ( ( Ord dom R1 /\ B e. dom R1 ) -> B e. On ) | 
						
							| 8 | 6 7 | mpan |  |-  ( B e. dom R1 -> B e. On ) | 
						
							| 9 | 8 | adantl |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> B e. On ) | 
						
							| 10 |  | rankon |  |-  ( rank ` A ) e. On | 
						
							| 11 |  | ontri1 |  |-  ( ( B e. On /\ ( rank ` A ) e. On ) -> ( B C_ ( rank ` A ) <-> -. ( rank ` A ) e. B ) ) | 
						
							| 12 | 9 10 11 | sylancl |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( B C_ ( rank ` A ) <-> -. ( rank ` A ) e. B ) ) | 
						
							| 13 | 2 12 | bitr4d |  |-  ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( -. A e. ( R1 ` B ) <-> B C_ ( rank ` A ) ) ) |