Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . Proposition 9.15(2) of TakeutiZaring p. 79. (Contributed by NM, 6-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankr1g | |- ( A e. V -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. V -> A e. _V ) |
|
| 2 | unir1 | |- U. ( R1 " On ) = _V |
|
| 3 | 1 2 | eleqtrrdi | |- ( A e. V -> A e. U. ( R1 " On ) ) |
| 4 | rankr1c | |- ( A e. U. ( R1 " On ) -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) |
|
| 5 | 3 4 | syl | |- ( A e. V -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) |