| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
|- ( R1 ` A ) C_ ( R1 ` A ) |
| 2 |
|
fvex |
|- ( R1 ` A ) e. _V |
| 3 |
2
|
pwid |
|- ( R1 ` A ) e. ~P ( R1 ` A ) |
| 4 |
|
r1sucg |
|- ( A e. dom R1 -> ( R1 ` suc A ) = ~P ( R1 ` A ) ) |
| 5 |
3 4
|
eleqtrrid |
|- ( A e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc A ) ) |
| 6 |
|
r1elwf |
|- ( ( R1 ` A ) e. ( R1 ` suc A ) -> ( R1 ` A ) e. U. ( R1 " On ) ) |
| 7 |
5 6
|
syl |
|- ( A e. dom R1 -> ( R1 ` A ) e. U. ( R1 " On ) ) |
| 8 |
|
rankr1bg |
|- ( ( ( R1 ` A ) e. U. ( R1 " On ) /\ A e. dom R1 ) -> ( ( R1 ` A ) C_ ( R1 ` A ) <-> ( rank ` ( R1 ` A ) ) C_ A ) ) |
| 9 |
7 8
|
mpancom |
|- ( A e. dom R1 -> ( ( R1 ` A ) C_ ( R1 ` A ) <-> ( rank ` ( R1 ` A ) ) C_ A ) ) |
| 10 |
1 9
|
mpbii |
|- ( A e. dom R1 -> ( rank ` ( R1 ` A ) ) C_ A ) |
| 11 |
|
rankonid |
|- ( A e. dom R1 <-> ( rank ` A ) = A ) |
| 12 |
11
|
biimpi |
|- ( A e. dom R1 -> ( rank ` A ) = A ) |
| 13 |
|
onssr1 |
|- ( A e. dom R1 -> A C_ ( R1 ` A ) ) |
| 14 |
|
rankssb |
|- ( ( R1 ` A ) e. U. ( R1 " On ) -> ( A C_ ( R1 ` A ) -> ( rank ` A ) C_ ( rank ` ( R1 ` A ) ) ) ) |
| 15 |
7 13 14
|
sylc |
|- ( A e. dom R1 -> ( rank ` A ) C_ ( rank ` ( R1 ` A ) ) ) |
| 16 |
12 15
|
eqsstrrd |
|- ( A e. dom R1 -> A C_ ( rank ` ( R1 ` A ) ) ) |
| 17 |
10 16
|
eqssd |
|- ( A e. dom R1 -> ( rank ` ( R1 ` A ) ) = A ) |
| 18 |
|
id |
|- ( ( rank ` ( R1 ` A ) ) = A -> ( rank ` ( R1 ` A ) ) = A ) |
| 19 |
|
rankdmr1 |
|- ( rank ` ( R1 ` A ) ) e. dom R1 |
| 20 |
18 19
|
eqeltrrdi |
|- ( ( rank ` ( R1 ` A ) ) = A -> A e. dom R1 ) |
| 21 |
17 20
|
impbii |
|- ( A e. dom R1 <-> ( rank ` ( R1 ` A ) ) = A ) |