Metamath Proof Explorer


Theorem rankss

Description: The subset relation is inherited by the rank function. Exercise 1 of TakeutiZaring p. 80. (Contributed by NM, 25-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis rankss.1
|- B e. _V
Assertion rankss
|- ( A C_ B -> ( rank ` A ) C_ ( rank ` B ) )

Proof

Step Hyp Ref Expression
1 rankss.1
 |-  B e. _V
2 unir1
 |-  U. ( R1 " On ) = _V
3 1 2 eleqtrri
 |-  B e. U. ( R1 " On )
4 rankssb
 |-  ( B e. U. ( R1 " On ) -> ( A C_ B -> ( rank ` A ) C_ ( rank ` B ) ) )
5 3 4 ax-mp
 |-  ( A C_ B -> ( rank ` A ) C_ ( rank ` B ) )