| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> A C_ B ) | 
						
							| 2 |  | r1rankidb |  |-  ( B e. U. ( R1 " On ) -> B C_ ( R1 ` ( rank ` B ) ) ) | 
						
							| 3 | 2 | adantr |  |-  ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> B C_ ( R1 ` ( rank ` B ) ) ) | 
						
							| 4 | 1 3 | sstrd |  |-  ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> A C_ ( R1 ` ( rank ` B ) ) ) | 
						
							| 5 |  | sswf |  |-  ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> A e. U. ( R1 " On ) ) | 
						
							| 6 |  | rankdmr1 |  |-  ( rank ` B ) e. dom R1 | 
						
							| 7 |  | rankr1bg |  |-  ( ( A e. U. ( R1 " On ) /\ ( rank ` B ) e. dom R1 ) -> ( A C_ ( R1 ` ( rank ` B ) ) <-> ( rank ` A ) C_ ( rank ` B ) ) ) | 
						
							| 8 | 5 6 7 | sylancl |  |-  ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> ( A C_ ( R1 ` ( rank ` B ) ) <-> ( rank ` A ) C_ ( rank ` B ) ) ) | 
						
							| 9 | 4 8 | mpbid |  |-  ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> ( rank ` A ) C_ ( rank ` B ) ) | 
						
							| 10 | 9 | ex |  |-  ( B e. U. ( R1 " On ) -> ( A C_ B -> ( rank ` A ) C_ ( rank ` B ) ) ) |