| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rankr1b.1 |  |-  A e. _V | 
						
							| 2 |  | df-suc |  |-  suc A = ( A u. { A } ) | 
						
							| 3 | 2 | fveq2i |  |-  ( rank ` suc A ) = ( rank ` ( A u. { A } ) ) | 
						
							| 4 |  | snex |  |-  { A } e. _V | 
						
							| 5 | 1 4 | rankun |  |-  ( rank ` ( A u. { A } ) ) = ( ( rank ` A ) u. ( rank ` { A } ) ) | 
						
							| 6 | 1 | ranksn |  |-  ( rank ` { A } ) = suc ( rank ` A ) | 
						
							| 7 | 6 | uneq2i |  |-  ( ( rank ` A ) u. ( rank ` { A } ) ) = ( ( rank ` A ) u. suc ( rank ` A ) ) | 
						
							| 8 |  | sssucid |  |-  ( rank ` A ) C_ suc ( rank ` A ) | 
						
							| 9 |  | ssequn1 |  |-  ( ( rank ` A ) C_ suc ( rank ` A ) <-> ( ( rank ` A ) u. suc ( rank ` A ) ) = suc ( rank ` A ) ) | 
						
							| 10 | 8 9 | mpbi |  |-  ( ( rank ` A ) u. suc ( rank ` A ) ) = suc ( rank ` A ) | 
						
							| 11 | 7 10 | eqtri |  |-  ( ( rank ` A ) u. ( rank ` { A } ) ) = suc ( rank ` A ) | 
						
							| 12 | 5 11 | eqtri |  |-  ( rank ` ( A u. { A } ) ) = suc ( rank ` A ) | 
						
							| 13 | 3 12 | eqtri |  |-  ( rank ` suc A ) = suc ( rank ` A ) |