Step |
Hyp |
Ref |
Expression |
1 |
|
rankr1b.1 |
|- A e. _V |
2 |
|
df-suc |
|- suc A = ( A u. { A } ) |
3 |
2
|
fveq2i |
|- ( rank ` suc A ) = ( rank ` ( A u. { A } ) ) |
4 |
|
snex |
|- { A } e. _V |
5 |
1 4
|
rankun |
|- ( rank ` ( A u. { A } ) ) = ( ( rank ` A ) u. ( rank ` { A } ) ) |
6 |
1
|
ranksn |
|- ( rank ` { A } ) = suc ( rank ` A ) |
7 |
6
|
uneq2i |
|- ( ( rank ` A ) u. ( rank ` { A } ) ) = ( ( rank ` A ) u. suc ( rank ` A ) ) |
8 |
|
sssucid |
|- ( rank ` A ) C_ suc ( rank ` A ) |
9 |
|
ssequn1 |
|- ( ( rank ` A ) C_ suc ( rank ` A ) <-> ( ( rank ` A ) u. suc ( rank ` A ) ) = suc ( rank ` A ) ) |
10 |
8 9
|
mpbi |
|- ( ( rank ` A ) u. suc ( rank ` A ) ) = suc ( rank ` A ) |
11 |
7 10
|
eqtri |
|- ( ( rank ` A ) u. ( rank ` { A } ) ) = suc ( rank ` A ) |
12 |
5 11
|
eqtri |
|- ( rank ` ( A u. { A } ) ) = suc ( rank ` A ) |
13 |
3 12
|
eqtri |
|- ( rank ` suc A ) = suc ( rank ` A ) |