| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unieq |  |-  ( x = A -> U. x = U. A ) | 
						
							| 2 | 1 | fveq2d |  |-  ( x = A -> ( rank ` U. x ) = ( rank ` U. A ) ) | 
						
							| 3 |  | fveq2 |  |-  ( x = A -> ( rank ` x ) = ( rank ` A ) ) | 
						
							| 4 | 3 | unieqd |  |-  ( x = A -> U. ( rank ` x ) = U. ( rank ` A ) ) | 
						
							| 5 | 2 4 | eqeq12d |  |-  ( x = A -> ( ( rank ` U. x ) = U. ( rank ` x ) <-> ( rank ` U. A ) = U. ( rank ` A ) ) ) | 
						
							| 6 |  | vex |  |-  x e. _V | 
						
							| 7 | 6 | rankuni2 |  |-  ( rank ` U. x ) = U_ z e. x ( rank ` z ) | 
						
							| 8 |  | fvex |  |-  ( rank ` z ) e. _V | 
						
							| 9 | 8 | dfiun2 |  |-  U_ z e. x ( rank ` z ) = U. { y | E. z e. x y = ( rank ` z ) } | 
						
							| 10 | 7 9 | eqtri |  |-  ( rank ` U. x ) = U. { y | E. z e. x y = ( rank ` z ) } | 
						
							| 11 |  | df-rex |  |-  ( E. z e. x y = ( rank ` z ) <-> E. z ( z e. x /\ y = ( rank ` z ) ) ) | 
						
							| 12 | 6 | rankel |  |-  ( z e. x -> ( rank ` z ) e. ( rank ` x ) ) | 
						
							| 13 | 12 | anim1i |  |-  ( ( z e. x /\ y = ( rank ` z ) ) -> ( ( rank ` z ) e. ( rank ` x ) /\ y = ( rank ` z ) ) ) | 
						
							| 14 | 13 | eximi |  |-  ( E. z ( z e. x /\ y = ( rank ` z ) ) -> E. z ( ( rank ` z ) e. ( rank ` x ) /\ y = ( rank ` z ) ) ) | 
						
							| 15 |  | 19.42v |  |-  ( E. z ( y e. ( rank ` x ) /\ y = ( rank ` z ) ) <-> ( y e. ( rank ` x ) /\ E. z y = ( rank ` z ) ) ) | 
						
							| 16 |  | eleq1 |  |-  ( y = ( rank ` z ) -> ( y e. ( rank ` x ) <-> ( rank ` z ) e. ( rank ` x ) ) ) | 
						
							| 17 | 16 | pm5.32ri |  |-  ( ( y e. ( rank ` x ) /\ y = ( rank ` z ) ) <-> ( ( rank ` z ) e. ( rank ` x ) /\ y = ( rank ` z ) ) ) | 
						
							| 18 | 17 | exbii |  |-  ( E. z ( y e. ( rank ` x ) /\ y = ( rank ` z ) ) <-> E. z ( ( rank ` z ) e. ( rank ` x ) /\ y = ( rank ` z ) ) ) | 
						
							| 19 |  | simpl |  |-  ( ( y e. ( rank ` x ) /\ E. z y = ( rank ` z ) ) -> y e. ( rank ` x ) ) | 
						
							| 20 |  | rankon |  |-  ( rank ` x ) e. On | 
						
							| 21 | 20 | oneli |  |-  ( y e. ( rank ` x ) -> y e. On ) | 
						
							| 22 |  | r1fnon |  |-  R1 Fn On | 
						
							| 23 |  | fndm |  |-  ( R1 Fn On -> dom R1 = On ) | 
						
							| 24 | 22 23 | ax-mp |  |-  dom R1 = On | 
						
							| 25 | 21 24 | eleqtrrdi |  |-  ( y e. ( rank ` x ) -> y e. dom R1 ) | 
						
							| 26 |  | rankr1id |  |-  ( y e. dom R1 <-> ( rank ` ( R1 ` y ) ) = y ) | 
						
							| 27 | 25 26 | sylib |  |-  ( y e. ( rank ` x ) -> ( rank ` ( R1 ` y ) ) = y ) | 
						
							| 28 | 27 | eqcomd |  |-  ( y e. ( rank ` x ) -> y = ( rank ` ( R1 ` y ) ) ) | 
						
							| 29 |  | fvex |  |-  ( R1 ` y ) e. _V | 
						
							| 30 |  | fveq2 |  |-  ( z = ( R1 ` y ) -> ( rank ` z ) = ( rank ` ( R1 ` y ) ) ) | 
						
							| 31 | 30 | eqeq2d |  |-  ( z = ( R1 ` y ) -> ( y = ( rank ` z ) <-> y = ( rank ` ( R1 ` y ) ) ) ) | 
						
							| 32 | 29 31 | spcev |  |-  ( y = ( rank ` ( R1 ` y ) ) -> E. z y = ( rank ` z ) ) | 
						
							| 33 | 28 32 | syl |  |-  ( y e. ( rank ` x ) -> E. z y = ( rank ` z ) ) | 
						
							| 34 | 33 | ancli |  |-  ( y e. ( rank ` x ) -> ( y e. ( rank ` x ) /\ E. z y = ( rank ` z ) ) ) | 
						
							| 35 | 19 34 | impbii |  |-  ( ( y e. ( rank ` x ) /\ E. z y = ( rank ` z ) ) <-> y e. ( rank ` x ) ) | 
						
							| 36 | 15 18 35 | 3bitr3i |  |-  ( E. z ( ( rank ` z ) e. ( rank ` x ) /\ y = ( rank ` z ) ) <-> y e. ( rank ` x ) ) | 
						
							| 37 | 14 36 | sylib |  |-  ( E. z ( z e. x /\ y = ( rank ` z ) ) -> y e. ( rank ` x ) ) | 
						
							| 38 | 11 37 | sylbi |  |-  ( E. z e. x y = ( rank ` z ) -> y e. ( rank ` x ) ) | 
						
							| 39 | 38 | abssi |  |-  { y | E. z e. x y = ( rank ` z ) } C_ ( rank ` x ) | 
						
							| 40 | 39 | unissi |  |-  U. { y | E. z e. x y = ( rank ` z ) } C_ U. ( rank ` x ) | 
						
							| 41 | 10 40 | eqsstri |  |-  ( rank ` U. x ) C_ U. ( rank ` x ) | 
						
							| 42 |  | pwuni |  |-  x C_ ~P U. x | 
						
							| 43 |  | vuniex |  |-  U. x e. _V | 
						
							| 44 | 43 | pwex |  |-  ~P U. x e. _V | 
						
							| 45 | 44 | rankss |  |-  ( x C_ ~P U. x -> ( rank ` x ) C_ ( rank ` ~P U. x ) ) | 
						
							| 46 | 42 45 | ax-mp |  |-  ( rank ` x ) C_ ( rank ` ~P U. x ) | 
						
							| 47 | 43 | rankpw |  |-  ( rank ` ~P U. x ) = suc ( rank ` U. x ) | 
						
							| 48 | 46 47 | sseqtri |  |-  ( rank ` x ) C_ suc ( rank ` U. x ) | 
						
							| 49 | 48 | unissi |  |-  U. ( rank ` x ) C_ U. suc ( rank ` U. x ) | 
						
							| 50 |  | rankon |  |-  ( rank ` U. x ) e. On | 
						
							| 51 | 50 | onunisuci |  |-  U. suc ( rank ` U. x ) = ( rank ` U. x ) | 
						
							| 52 | 49 51 | sseqtri |  |-  U. ( rank ` x ) C_ ( rank ` U. x ) | 
						
							| 53 | 41 52 | eqssi |  |-  ( rank ` U. x ) = U. ( rank ` x ) | 
						
							| 54 | 5 53 | vtoclg |  |-  ( A e. _V -> ( rank ` U. A ) = U. ( rank ` A ) ) | 
						
							| 55 |  | uniexb |  |-  ( A e. _V <-> U. A e. _V ) | 
						
							| 56 |  | fvprc |  |-  ( -. U. A e. _V -> ( rank ` U. A ) = (/) ) | 
						
							| 57 | 55 56 | sylnbi |  |-  ( -. A e. _V -> ( rank ` U. A ) = (/) ) | 
						
							| 58 |  | uni0 |  |-  U. (/) = (/) | 
						
							| 59 | 57 58 | eqtr4di |  |-  ( -. A e. _V -> ( rank ` U. A ) = U. (/) ) | 
						
							| 60 |  | fvprc |  |-  ( -. A e. _V -> ( rank ` A ) = (/) ) | 
						
							| 61 | 60 | unieqd |  |-  ( -. A e. _V -> U. ( rank ` A ) = U. (/) ) | 
						
							| 62 | 59 61 | eqtr4d |  |-  ( -. A e. _V -> ( rank ` U. A ) = U. ( rank ` A ) ) | 
						
							| 63 | 54 62 | pm2.61i |  |-  ( rank ` U. A ) = U. ( rank ` A ) |