Description: The rank of a union. Part of Theorem 15.17(iv) of Monk1 p. 112. (Contributed by NM, 30-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ranksn.1 | |- A e. _V |
|
Assertion | rankuni2 | |- ( rank ` U. A ) = U_ x e. A ( rank ` x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ranksn.1 | |- A e. _V |
|
2 | unir1 | |- U. ( R1 " On ) = _V |
|
3 | 1 2 | eleqtrri | |- A e. U. ( R1 " On ) |
4 | rankuni2b | |- ( A e. U. ( R1 " On ) -> ( rank ` U. A ) = U_ x e. A ( rank ` x ) ) |
|
5 | 3 4 | ax-mp | |- ( rank ` U. A ) = U_ x e. A ( rank ` x ) |