Description: The rank of a union. Part of Theorem 15.17(iv) of Monk1 p. 112. (Contributed by NM, 30-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ranksn.1 | |- A e. _V | |
| Assertion | rankuni2 | |- ( rank ` U. A ) = U_ x e. A ( rank ` x ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ranksn.1 | |- A e. _V | |
| 2 | unir1 | |- U. ( R1 " On ) = _V | |
| 3 | 1 2 | eleqtrri | |- A e. U. ( R1 " On ) | 
| 4 | rankuni2b | |- ( A e. U. ( R1 " On ) -> ( rank ` U. A ) = U_ x e. A ( rank ` x ) ) | |
| 5 | 3 4 | ax-mp | |- ( rank ` U. A ) = U_ x e. A ( rank ` x ) |