Metamath Proof Explorer


Theorem rankuni2

Description: The rank of a union. Part of Theorem 15.17(iv) of Monk1 p. 112. (Contributed by NM, 30-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis ranksn.1
|- A e. _V
Assertion rankuni2
|- ( rank ` U. A ) = U_ x e. A ( rank ` x )

Proof

Step Hyp Ref Expression
1 ranksn.1
 |-  A e. _V
2 unir1
 |-  U. ( R1 " On ) = _V
3 1 2 eleqtrri
 |-  A e. U. ( R1 " On )
4 rankuni2b
 |-  ( A e. U. ( R1 " On ) -> ( rank ` U. A ) = U_ x e. A ( rank ` x ) )
5 3 4 ax-mp
 |-  ( rank ` U. A ) = U_ x e. A ( rank ` x )