Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of TakeutiZaring p. 79. (Contributed by NM, 11-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankval3.1 | |- A e. _V |
|
| Assertion | rankval3 | |- ( rank ` A ) = |^| { x e. On | A. y e. A ( rank ` y ) e. x } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankval3.1 | |- A e. _V |
|
| 2 | unir1 | |- U. ( R1 " On ) = _V |
|
| 3 | 1 2 | eleqtrri | |- A e. U. ( R1 " On ) |
| 4 | rankval3b | |- ( A e. U. ( R1 " On ) -> ( rank ` A ) = |^| { x e. On | A. y e. A ( rank ` y ) e. x } ) |
|
| 5 | 3 4 | ax-mp | |- ( rank ` A ) = |^| { x e. On | A. y e. A ( rank ` y ) e. x } |