| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankr1b.1 |
|- A e. _V |
| 2 |
|
nfcv |
|- F/_ x A |
| 3 |
|
nfcv |
|- F/_ x R1 |
| 4 |
|
nfiu1 |
|- F/_ x U_ x e. A suc ( rank ` x ) |
| 5 |
3 4
|
nffv |
|- F/_ x ( R1 ` U_ x e. A suc ( rank ` x ) ) |
| 6 |
2 5
|
dfssf |
|- ( A C_ ( R1 ` U_ x e. A suc ( rank ` x ) ) <-> A. x ( x e. A -> x e. ( R1 ` U_ x e. A suc ( rank ` x ) ) ) ) |
| 7 |
|
vex |
|- x e. _V |
| 8 |
7
|
rankid |
|- x e. ( R1 ` suc ( rank ` x ) ) |
| 9 |
|
ssiun2 |
|- ( x e. A -> suc ( rank ` x ) C_ U_ x e. A suc ( rank ` x ) ) |
| 10 |
|
rankon |
|- ( rank ` x ) e. On |
| 11 |
10
|
onsuci |
|- suc ( rank ` x ) e. On |
| 12 |
11
|
rgenw |
|- A. x e. A suc ( rank ` x ) e. On |
| 13 |
|
iunon |
|- ( ( A e. _V /\ A. x e. A suc ( rank ` x ) e. On ) -> U_ x e. A suc ( rank ` x ) e. On ) |
| 14 |
1 12 13
|
mp2an |
|- U_ x e. A suc ( rank ` x ) e. On |
| 15 |
|
r1ord3 |
|- ( ( suc ( rank ` x ) e. On /\ U_ x e. A suc ( rank ` x ) e. On ) -> ( suc ( rank ` x ) C_ U_ x e. A suc ( rank ` x ) -> ( R1 ` suc ( rank ` x ) ) C_ ( R1 ` U_ x e. A suc ( rank ` x ) ) ) ) |
| 16 |
11 14 15
|
mp2an |
|- ( suc ( rank ` x ) C_ U_ x e. A suc ( rank ` x ) -> ( R1 ` suc ( rank ` x ) ) C_ ( R1 ` U_ x e. A suc ( rank ` x ) ) ) |
| 17 |
9 16
|
syl |
|- ( x e. A -> ( R1 ` suc ( rank ` x ) ) C_ ( R1 ` U_ x e. A suc ( rank ` x ) ) ) |
| 18 |
17
|
sseld |
|- ( x e. A -> ( x e. ( R1 ` suc ( rank ` x ) ) -> x e. ( R1 ` U_ x e. A suc ( rank ` x ) ) ) ) |
| 19 |
8 18
|
mpi |
|- ( x e. A -> x e. ( R1 ` U_ x e. A suc ( rank ` x ) ) ) |
| 20 |
6 19
|
mpgbir |
|- A C_ ( R1 ` U_ x e. A suc ( rank ` x ) ) |
| 21 |
|
fvex |
|- ( R1 ` U_ x e. A suc ( rank ` x ) ) e. _V |
| 22 |
21
|
rankss |
|- ( A C_ ( R1 ` U_ x e. A suc ( rank ` x ) ) -> ( rank ` A ) C_ ( rank ` ( R1 ` U_ x e. A suc ( rank ` x ) ) ) ) |
| 23 |
20 22
|
ax-mp |
|- ( rank ` A ) C_ ( rank ` ( R1 ` U_ x e. A suc ( rank ` x ) ) ) |
| 24 |
|
r1ord3 |
|- ( ( U_ x e. A suc ( rank ` x ) e. On /\ y e. On ) -> ( U_ x e. A suc ( rank ` x ) C_ y -> ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) ) ) |
| 25 |
14 24
|
mpan |
|- ( y e. On -> ( U_ x e. A suc ( rank ` x ) C_ y -> ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) ) ) |
| 26 |
25
|
ss2rabi |
|- { y e. On | U_ x e. A suc ( rank ` x ) C_ y } C_ { y e. On | ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) } |
| 27 |
|
intss |
|- ( { y e. On | U_ x e. A suc ( rank ` x ) C_ y } C_ { y e. On | ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) } -> |^| { y e. On | ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) } C_ |^| { y e. On | U_ x e. A suc ( rank ` x ) C_ y } ) |
| 28 |
26 27
|
ax-mp |
|- |^| { y e. On | ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) } C_ |^| { y e. On | U_ x e. A suc ( rank ` x ) C_ y } |
| 29 |
|
rankval2 |
|- ( ( R1 ` U_ x e. A suc ( rank ` x ) ) e. _V -> ( rank ` ( R1 ` U_ x e. A suc ( rank ` x ) ) ) = |^| { y e. On | ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) } ) |
| 30 |
21 29
|
ax-mp |
|- ( rank ` ( R1 ` U_ x e. A suc ( rank ` x ) ) ) = |^| { y e. On | ( R1 ` U_ x e. A suc ( rank ` x ) ) C_ ( R1 ` y ) } |
| 31 |
|
intmin |
|- ( U_ x e. A suc ( rank ` x ) e. On -> |^| { y e. On | U_ x e. A suc ( rank ` x ) C_ y } = U_ x e. A suc ( rank ` x ) ) |
| 32 |
14 31
|
ax-mp |
|- |^| { y e. On | U_ x e. A suc ( rank ` x ) C_ y } = U_ x e. A suc ( rank ` x ) |
| 33 |
32
|
eqcomi |
|- U_ x e. A suc ( rank ` x ) = |^| { y e. On | U_ x e. A suc ( rank ` x ) C_ y } |
| 34 |
28 30 33
|
3sstr4i |
|- ( rank ` ( R1 ` U_ x e. A suc ( rank ` x ) ) ) C_ U_ x e. A suc ( rank ` x ) |
| 35 |
23 34
|
sstri |
|- ( rank ` A ) C_ U_ x e. A suc ( rank ` x ) |
| 36 |
|
iunss |
|- ( U_ x e. A suc ( rank ` x ) C_ ( rank ` A ) <-> A. x e. A suc ( rank ` x ) C_ ( rank ` A ) ) |
| 37 |
1
|
rankel |
|- ( x e. A -> ( rank ` x ) e. ( rank ` A ) ) |
| 38 |
|
rankon |
|- ( rank ` A ) e. On |
| 39 |
10 38
|
onsucssi |
|- ( ( rank ` x ) e. ( rank ` A ) <-> suc ( rank ` x ) C_ ( rank ` A ) ) |
| 40 |
37 39
|
sylib |
|- ( x e. A -> suc ( rank ` x ) C_ ( rank ` A ) ) |
| 41 |
36 40
|
mprgbir |
|- U_ x e. A suc ( rank ` x ) C_ ( rank ` A ) |
| 42 |
35 41
|
eqssi |
|- ( rank ` A ) = U_ x e. A suc ( rank ` x ) |