Metamath Proof Explorer


Theorem rankvaln

Description: Value of the rank function at a non-well-founded set. (The antecedent is always false under Foundation, by unir1 , unless A is a proper class.) (Contributed by Mario Carneiro, 22-Mar-2013) (Revised by Mario Carneiro, 10-Sep-2013)

Ref Expression
Assertion rankvaln
|- ( -. A e. U. ( R1 " On ) -> ( rank ` A ) = (/) )

Proof

Step Hyp Ref Expression
1 rankf
 |-  rank : U. ( R1 " On ) --> On
2 1 fdmi
 |-  dom rank = U. ( R1 " On )
3 2 eleq2i
 |-  ( A e. dom rank <-> A e. U. ( R1 " On ) )
4 ndmfv
 |-  ( -. A e. dom rank -> ( rank ` A ) = (/) )
5 3 4 sylnbir
 |-  ( -. A e. U. ( R1 " On ) -> ( rank ` A ) = (/) )