Step |
Hyp |
Ref |
Expression |
1 |
|
rankxplim.1 |
|- A e. _V |
2 |
|
rankxplim.2 |
|- B e. _V |
3 |
|
0ellim |
|- ( Lim ( rank ` ( A X. B ) ) -> (/) e. ( rank ` ( A X. B ) ) ) |
4 |
|
n0i |
|- ( (/) e. ( rank ` ( A X. B ) ) -> -. ( rank ` ( A X. B ) ) = (/) ) |
5 |
3 4
|
syl |
|- ( Lim ( rank ` ( A X. B ) ) -> -. ( rank ` ( A X. B ) ) = (/) ) |
6 |
|
df-ne |
|- ( ( A X. B ) =/= (/) <-> -. ( A X. B ) = (/) ) |
7 |
1 2
|
xpex |
|- ( A X. B ) e. _V |
8 |
7
|
rankeq0 |
|- ( ( A X. B ) = (/) <-> ( rank ` ( A X. B ) ) = (/) ) |
9 |
8
|
notbii |
|- ( -. ( A X. B ) = (/) <-> -. ( rank ` ( A X. B ) ) = (/) ) |
10 |
6 9
|
bitr2i |
|- ( -. ( rank ` ( A X. B ) ) = (/) <-> ( A X. B ) =/= (/) ) |
11 |
5 10
|
sylib |
|- ( Lim ( rank ` ( A X. B ) ) -> ( A X. B ) =/= (/) ) |
12 |
|
limuni2 |
|- ( Lim ( rank ` ( A X. B ) ) -> Lim U. ( rank ` ( A X. B ) ) ) |
13 |
|
limuni2 |
|- ( Lim U. ( rank ` ( A X. B ) ) -> Lim U. U. ( rank ` ( A X. B ) ) ) |
14 |
12 13
|
syl |
|- ( Lim ( rank ` ( A X. B ) ) -> Lim U. U. ( rank ` ( A X. B ) ) ) |
15 |
|
rankuni |
|- ( rank ` U. U. ( A X. B ) ) = U. ( rank ` U. ( A X. B ) ) |
16 |
|
rankuni |
|- ( rank ` U. ( A X. B ) ) = U. ( rank ` ( A X. B ) ) |
17 |
16
|
unieqi |
|- U. ( rank ` U. ( A X. B ) ) = U. U. ( rank ` ( A X. B ) ) |
18 |
15 17
|
eqtr2i |
|- U. U. ( rank ` ( A X. B ) ) = ( rank ` U. U. ( A X. B ) ) |
19 |
|
unixp |
|- ( ( A X. B ) =/= (/) -> U. U. ( A X. B ) = ( A u. B ) ) |
20 |
19
|
fveq2d |
|- ( ( A X. B ) =/= (/) -> ( rank ` U. U. ( A X. B ) ) = ( rank ` ( A u. B ) ) ) |
21 |
18 20
|
eqtrid |
|- ( ( A X. B ) =/= (/) -> U. U. ( rank ` ( A X. B ) ) = ( rank ` ( A u. B ) ) ) |
22 |
|
limeq |
|- ( U. U. ( rank ` ( A X. B ) ) = ( rank ` ( A u. B ) ) -> ( Lim U. U. ( rank ` ( A X. B ) ) <-> Lim ( rank ` ( A u. B ) ) ) ) |
23 |
21 22
|
syl |
|- ( ( A X. B ) =/= (/) -> ( Lim U. U. ( rank ` ( A X. B ) ) <-> Lim ( rank ` ( A u. B ) ) ) ) |
24 |
14 23
|
syl5ib |
|- ( ( A X. B ) =/= (/) -> ( Lim ( rank ` ( A X. B ) ) -> Lim ( rank ` ( A u. B ) ) ) ) |
25 |
11 24
|
mpcom |
|- ( Lim ( rank ` ( A X. B ) ) -> Lim ( rank ` ( A u. B ) ) ) |