Step |
Hyp |
Ref |
Expression |
1 |
|
rankxplim.1 |
|- A e. _V |
2 |
|
rankxplim.2 |
|- B e. _V |
3 |
|
unixp |
|- ( ( A X. B ) =/= (/) -> U. U. ( A X. B ) = ( A u. B ) ) |
4 |
3
|
fveq2d |
|- ( ( A X. B ) =/= (/) -> ( rank ` U. U. ( A X. B ) ) = ( rank ` ( A u. B ) ) ) |
5 |
|
rankuni |
|- ( rank ` U. U. ( A X. B ) ) = U. ( rank ` U. ( A X. B ) ) |
6 |
|
rankuni |
|- ( rank ` U. ( A X. B ) ) = U. ( rank ` ( A X. B ) ) |
7 |
6
|
unieqi |
|- U. ( rank ` U. ( A X. B ) ) = U. U. ( rank ` ( A X. B ) ) |
8 |
5 7
|
eqtri |
|- ( rank ` U. U. ( A X. B ) ) = U. U. ( rank ` ( A X. B ) ) |
9 |
4 8
|
eqtr3di |
|- ( ( A X. B ) =/= (/) -> ( rank ` ( A u. B ) ) = U. U. ( rank ` ( A X. B ) ) ) |
10 |
|
suc11reg |
|- ( suc ( rank ` ( A u. B ) ) = suc U. U. ( rank ` ( A X. B ) ) <-> ( rank ` ( A u. B ) ) = U. U. ( rank ` ( A X. B ) ) ) |
11 |
9 10
|
sylibr |
|- ( ( A X. B ) =/= (/) -> suc ( rank ` ( A u. B ) ) = suc U. U. ( rank ` ( A X. B ) ) ) |
12 |
11
|
adantl |
|- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> suc ( rank ` ( A u. B ) ) = suc U. U. ( rank ` ( A X. B ) ) ) |
13 |
|
fvex |
|- ( rank ` ( A u. B ) ) e. _V |
14 |
|
eleq1 |
|- ( ( rank ` ( A u. B ) ) = suc C -> ( ( rank ` ( A u. B ) ) e. _V <-> suc C e. _V ) ) |
15 |
13 14
|
mpbii |
|- ( ( rank ` ( A u. B ) ) = suc C -> suc C e. _V ) |
16 |
|
sucexb |
|- ( C e. _V <-> suc C e. _V ) |
17 |
15 16
|
sylibr |
|- ( ( rank ` ( A u. B ) ) = suc C -> C e. _V ) |
18 |
|
nlimsucg |
|- ( C e. _V -> -. Lim suc C ) |
19 |
17 18
|
syl |
|- ( ( rank ` ( A u. B ) ) = suc C -> -. Lim suc C ) |
20 |
|
limeq |
|- ( ( rank ` ( A u. B ) ) = suc C -> ( Lim ( rank ` ( A u. B ) ) <-> Lim suc C ) ) |
21 |
19 20
|
mtbird |
|- ( ( rank ` ( A u. B ) ) = suc C -> -. Lim ( rank ` ( A u. B ) ) ) |
22 |
1 2
|
rankxplim2 |
|- ( Lim ( rank ` ( A X. B ) ) -> Lim ( rank ` ( A u. B ) ) ) |
23 |
21 22
|
nsyl |
|- ( ( rank ` ( A u. B ) ) = suc C -> -. Lim ( rank ` ( A X. B ) ) ) |
24 |
1 2
|
xpex |
|- ( A X. B ) e. _V |
25 |
24
|
rankeq0 |
|- ( ( A X. B ) = (/) <-> ( rank ` ( A X. B ) ) = (/) ) |
26 |
25
|
necon3abii |
|- ( ( A X. B ) =/= (/) <-> -. ( rank ` ( A X. B ) ) = (/) ) |
27 |
|
rankon |
|- ( rank ` ( A X. B ) ) e. On |
28 |
27
|
onordi |
|- Ord ( rank ` ( A X. B ) ) |
29 |
|
ordzsl |
|- ( Ord ( rank ` ( A X. B ) ) <-> ( ( rank ` ( A X. B ) ) = (/) \/ E. x e. On ( rank ` ( A X. B ) ) = suc x \/ Lim ( rank ` ( A X. B ) ) ) ) |
30 |
28 29
|
mpbi |
|- ( ( rank ` ( A X. B ) ) = (/) \/ E. x e. On ( rank ` ( A X. B ) ) = suc x \/ Lim ( rank ` ( A X. B ) ) ) |
31 |
|
3orass |
|- ( ( ( rank ` ( A X. B ) ) = (/) \/ E. x e. On ( rank ` ( A X. B ) ) = suc x \/ Lim ( rank ` ( A X. B ) ) ) <-> ( ( rank ` ( A X. B ) ) = (/) \/ ( E. x e. On ( rank ` ( A X. B ) ) = suc x \/ Lim ( rank ` ( A X. B ) ) ) ) ) |
32 |
30 31
|
mpbi |
|- ( ( rank ` ( A X. B ) ) = (/) \/ ( E. x e. On ( rank ` ( A X. B ) ) = suc x \/ Lim ( rank ` ( A X. B ) ) ) ) |
33 |
32
|
ori |
|- ( -. ( rank ` ( A X. B ) ) = (/) -> ( E. x e. On ( rank ` ( A X. B ) ) = suc x \/ Lim ( rank ` ( A X. B ) ) ) ) |
34 |
26 33
|
sylbi |
|- ( ( A X. B ) =/= (/) -> ( E. x e. On ( rank ` ( A X. B ) ) = suc x \/ Lim ( rank ` ( A X. B ) ) ) ) |
35 |
34
|
ord |
|- ( ( A X. B ) =/= (/) -> ( -. E. x e. On ( rank ` ( A X. B ) ) = suc x -> Lim ( rank ` ( A X. B ) ) ) ) |
36 |
35
|
con1d |
|- ( ( A X. B ) =/= (/) -> ( -. Lim ( rank ` ( A X. B ) ) -> E. x e. On ( rank ` ( A X. B ) ) = suc x ) ) |
37 |
23 36
|
syl5com |
|- ( ( rank ` ( A u. B ) ) = suc C -> ( ( A X. B ) =/= (/) -> E. x e. On ( rank ` ( A X. B ) ) = suc x ) ) |
38 |
|
nlimsucg |
|- ( x e. _V -> -. Lim suc x ) |
39 |
38
|
elv |
|- -. Lim suc x |
40 |
|
limeq |
|- ( ( rank ` ( A X. B ) ) = suc x -> ( Lim ( rank ` ( A X. B ) ) <-> Lim suc x ) ) |
41 |
39 40
|
mtbiri |
|- ( ( rank ` ( A X. B ) ) = suc x -> -. Lim ( rank ` ( A X. B ) ) ) |
42 |
41
|
rexlimivw |
|- ( E. x e. On ( rank ` ( A X. B ) ) = suc x -> -. Lim ( rank ` ( A X. B ) ) ) |
43 |
1 2
|
rankxplim3 |
|- ( Lim ( rank ` ( A X. B ) ) <-> Lim U. ( rank ` ( A X. B ) ) ) |
44 |
42 43
|
sylnib |
|- ( E. x e. On ( rank ` ( A X. B ) ) = suc x -> -. Lim U. ( rank ` ( A X. B ) ) ) |
45 |
37 44
|
syl6com |
|- ( ( A X. B ) =/= (/) -> ( ( rank ` ( A u. B ) ) = suc C -> -. Lim U. ( rank ` ( A X. B ) ) ) ) |
46 |
|
unixp0 |
|- ( ( A X. B ) = (/) <-> U. ( A X. B ) = (/) ) |
47 |
24
|
uniex |
|- U. ( A X. B ) e. _V |
48 |
47
|
rankeq0 |
|- ( U. ( A X. B ) = (/) <-> ( rank ` U. ( A X. B ) ) = (/) ) |
49 |
6
|
eqeq1i |
|- ( ( rank ` U. ( A X. B ) ) = (/) <-> U. ( rank ` ( A X. B ) ) = (/) ) |
50 |
46 48 49
|
3bitri |
|- ( ( A X. B ) = (/) <-> U. ( rank ` ( A X. B ) ) = (/) ) |
51 |
50
|
necon3abii |
|- ( ( A X. B ) =/= (/) <-> -. U. ( rank ` ( A X. B ) ) = (/) ) |
52 |
|
onuni |
|- ( ( rank ` ( A X. B ) ) e. On -> U. ( rank ` ( A X. B ) ) e. On ) |
53 |
27 52
|
ax-mp |
|- U. ( rank ` ( A X. B ) ) e. On |
54 |
53
|
onordi |
|- Ord U. ( rank ` ( A X. B ) ) |
55 |
|
ordzsl |
|- ( Ord U. ( rank ` ( A X. B ) ) <-> ( U. ( rank ` ( A X. B ) ) = (/) \/ E. x e. On U. ( rank ` ( A X. B ) ) = suc x \/ Lim U. ( rank ` ( A X. B ) ) ) ) |
56 |
54 55
|
mpbi |
|- ( U. ( rank ` ( A X. B ) ) = (/) \/ E. x e. On U. ( rank ` ( A X. B ) ) = suc x \/ Lim U. ( rank ` ( A X. B ) ) ) |
57 |
|
3orass |
|- ( ( U. ( rank ` ( A X. B ) ) = (/) \/ E. x e. On U. ( rank ` ( A X. B ) ) = suc x \/ Lim U. ( rank ` ( A X. B ) ) ) <-> ( U. ( rank ` ( A X. B ) ) = (/) \/ ( E. x e. On U. ( rank ` ( A X. B ) ) = suc x \/ Lim U. ( rank ` ( A X. B ) ) ) ) ) |
58 |
56 57
|
mpbi |
|- ( U. ( rank ` ( A X. B ) ) = (/) \/ ( E. x e. On U. ( rank ` ( A X. B ) ) = suc x \/ Lim U. ( rank ` ( A X. B ) ) ) ) |
59 |
58
|
ori |
|- ( -. U. ( rank ` ( A X. B ) ) = (/) -> ( E. x e. On U. ( rank ` ( A X. B ) ) = suc x \/ Lim U. ( rank ` ( A X. B ) ) ) ) |
60 |
51 59
|
sylbi |
|- ( ( A X. B ) =/= (/) -> ( E. x e. On U. ( rank ` ( A X. B ) ) = suc x \/ Lim U. ( rank ` ( A X. B ) ) ) ) |
61 |
60
|
ord |
|- ( ( A X. B ) =/= (/) -> ( -. E. x e. On U. ( rank ` ( A X. B ) ) = suc x -> Lim U. ( rank ` ( A X. B ) ) ) ) |
62 |
61
|
con1d |
|- ( ( A X. B ) =/= (/) -> ( -. Lim U. ( rank ` ( A X. B ) ) -> E. x e. On U. ( rank ` ( A X. B ) ) = suc x ) ) |
63 |
45 62
|
syld |
|- ( ( A X. B ) =/= (/) -> ( ( rank ` ( A u. B ) ) = suc C -> E. x e. On U. ( rank ` ( A X. B ) ) = suc x ) ) |
64 |
63
|
impcom |
|- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> E. x e. On U. ( rank ` ( A X. B ) ) = suc x ) |
65 |
|
onsucuni2 |
|- ( ( U. ( rank ` ( A X. B ) ) e. On /\ U. ( rank ` ( A X. B ) ) = suc x ) -> suc U. U. ( rank ` ( A X. B ) ) = U. ( rank ` ( A X. B ) ) ) |
66 |
53 65
|
mpan |
|- ( U. ( rank ` ( A X. B ) ) = suc x -> suc U. U. ( rank ` ( A X. B ) ) = U. ( rank ` ( A X. B ) ) ) |
67 |
66
|
rexlimivw |
|- ( E. x e. On U. ( rank ` ( A X. B ) ) = suc x -> suc U. U. ( rank ` ( A X. B ) ) = U. ( rank ` ( A X. B ) ) ) |
68 |
64 67
|
syl |
|- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> suc U. U. ( rank ` ( A X. B ) ) = U. ( rank ` ( A X. B ) ) ) |
69 |
12 68
|
eqtrd |
|- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> suc ( rank ` ( A u. B ) ) = U. ( rank ` ( A X. B ) ) ) |
70 |
|
suc11reg |
|- ( suc suc ( rank ` ( A u. B ) ) = suc U. ( rank ` ( A X. B ) ) <-> suc ( rank ` ( A u. B ) ) = U. ( rank ` ( A X. B ) ) ) |
71 |
69 70
|
sylibr |
|- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> suc suc ( rank ` ( A u. B ) ) = suc U. ( rank ` ( A X. B ) ) ) |
72 |
37
|
imp |
|- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> E. x e. On ( rank ` ( A X. B ) ) = suc x ) |
73 |
|
onsucuni2 |
|- ( ( ( rank ` ( A X. B ) ) e. On /\ ( rank ` ( A X. B ) ) = suc x ) -> suc U. ( rank ` ( A X. B ) ) = ( rank ` ( A X. B ) ) ) |
74 |
27 73
|
mpan |
|- ( ( rank ` ( A X. B ) ) = suc x -> suc U. ( rank ` ( A X. B ) ) = ( rank ` ( A X. B ) ) ) |
75 |
74
|
rexlimivw |
|- ( E. x e. On ( rank ` ( A X. B ) ) = suc x -> suc U. ( rank ` ( A X. B ) ) = ( rank ` ( A X. B ) ) ) |
76 |
72 75
|
syl |
|- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> suc U. ( rank ` ( A X. B ) ) = ( rank ` ( A X. B ) ) ) |
77 |
71 76
|
eqtr2d |
|- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> ( rank ` ( A X. B ) ) = suc suc ( rank ` ( A u. B ) ) ) |