| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rankxpl.1 | 
							 |-  A e. _V  | 
						
						
							| 2 | 
							
								
							 | 
							rankxpl.2 | 
							 |-  B e. _V  | 
						
						
							| 3 | 
							
								
							 | 
							xpsspw | 
							 |-  ( A X. B ) C_ ~P ~P ( A u. B )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							unex | 
							 |-  ( A u. B ) e. _V  | 
						
						
							| 5 | 
							
								4
							 | 
							pwex | 
							 |-  ~P ( A u. B ) e. _V  | 
						
						
							| 6 | 
							
								5
							 | 
							pwex | 
							 |-  ~P ~P ( A u. B ) e. _V  | 
						
						
							| 7 | 
							
								6
							 | 
							rankss | 
							 |-  ( ( A X. B ) C_ ~P ~P ( A u. B ) -> ( rank ` ( A X. B ) ) C_ ( rank ` ~P ~P ( A u. B ) ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							ax-mp | 
							 |-  ( rank ` ( A X. B ) ) C_ ( rank ` ~P ~P ( A u. B ) )  | 
						
						
							| 9 | 
							
								5
							 | 
							rankpw | 
							 |-  ( rank ` ~P ~P ( A u. B ) ) = suc ( rank ` ~P ( A u. B ) )  | 
						
						
							| 10 | 
							
								4
							 | 
							rankpw | 
							 |-  ( rank ` ~P ( A u. B ) ) = suc ( rank ` ( A u. B ) )  | 
						
						
							| 11 | 
							
								
							 | 
							suceq | 
							 |-  ( ( rank ` ~P ( A u. B ) ) = suc ( rank ` ( A u. B ) ) -> suc ( rank ` ~P ( A u. B ) ) = suc suc ( rank ` ( A u. B ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							ax-mp | 
							 |-  suc ( rank ` ~P ( A u. B ) ) = suc suc ( rank ` ( A u. B ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							eqtri | 
							 |-  ( rank ` ~P ~P ( A u. B ) ) = suc suc ( rank ` ( A u. B ) )  | 
						
						
							| 14 | 
							
								8 13
							 | 
							sseqtri | 
							 |-  ( rank ` ( A X. B ) ) C_ suc suc ( rank ` ( A u. B ) )  |