Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015) (Proof shortened by Wolf Lammen, 19-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | baib.1 | |- ( ph <-> ( ps /\ ch ) ) |
|
Assertion | rbaib | |- ( ch -> ( ph <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | |- ( ph <-> ( ps /\ ch ) ) |
|
2 | 1 | rbaibr | |- ( ch -> ( ps <-> ph ) ) |
3 | 2 | bicomd | |- ( ch -> ( ph <-> ps ) ) |