Metamath Proof Explorer


Theorem rbaibd

Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis baibd.1
|- ( ph -> ( ps <-> ( ch /\ th ) ) )
Assertion rbaibd
|- ( ( ph /\ th ) -> ( ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 baibd.1
 |-  ( ph -> ( ps <-> ( ch /\ th ) ) )
2 1 biancomd
 |-  ( ph -> ( ps <-> ( th /\ ch ) ) )
3 2 baibd
 |-  ( ( ph /\ th ) -> ( ps <-> ch ) )