Metamath Proof Explorer


Theorem rbaibr

Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015) (Proof shortened by Wolf Lammen, 19-Jan-2020)

Ref Expression
Hypothesis baib.1
|- ( ph <-> ( ps /\ ch ) )
Assertion rbaibr
|- ( ch -> ( ps <-> ph ) )

Proof

Step Hyp Ref Expression
1 baib.1
 |-  ( ph <-> ( ps /\ ch ) )
2 1 biancomi
 |-  ( ph <-> ( ch /\ ps ) )
3 2 baibr
 |-  ( ch -> ( ps <-> ph ) )