Metamath Proof Explorer


Theorem rbropap

Description: Properties of a pair in a restricted binary relation M expressed as an ordered-pair class abstraction: M is the binary relation W restricted by the condition ps . (Contributed by AV, 31-Jan-2021)

Ref Expression
Hypotheses rbropapd.1
|- ( ph -> M = { <. f , p >. | ( f W p /\ ps ) } )
rbropapd.2
|- ( ( f = F /\ p = P ) -> ( ps <-> ch ) )
Assertion rbropap
|- ( ( ph /\ F e. X /\ P e. Y ) -> ( F M P <-> ( F W P /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 rbropapd.1
 |-  ( ph -> M = { <. f , p >. | ( f W p /\ ps ) } )
2 rbropapd.2
 |-  ( ( f = F /\ p = P ) -> ( ps <-> ch ) )
3 1 2 rbropapd
 |-  ( ph -> ( ( F e. X /\ P e. Y ) -> ( F M P <-> ( F W P /\ ch ) ) ) )
4 3 3impib
 |-  ( ( ph /\ F e. X /\ P e. Y ) -> ( F M P <-> ( F W P /\ ch ) ) )