| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rbropapd.1 |
|- ( ph -> M = { <. f , p >. | ( f W p /\ ps ) } ) |
| 2 |
|
rbropapd.2 |
|- ( ( f = F /\ p = P ) -> ( ps <-> ch ) ) |
| 3 |
|
df-br |
|- ( F M P <-> <. F , P >. e. M ) |
| 4 |
1
|
eleq2d |
|- ( ph -> ( <. F , P >. e. M <-> <. F , P >. e. { <. f , p >. | ( f W p /\ ps ) } ) ) |
| 5 |
3 4
|
bitrid |
|- ( ph -> ( F M P <-> <. F , P >. e. { <. f , p >. | ( f W p /\ ps ) } ) ) |
| 6 |
|
breq12 |
|- ( ( f = F /\ p = P ) -> ( f W p <-> F W P ) ) |
| 7 |
6 2
|
anbi12d |
|- ( ( f = F /\ p = P ) -> ( ( f W p /\ ps ) <-> ( F W P /\ ch ) ) ) |
| 8 |
7
|
opelopabga |
|- ( ( F e. X /\ P e. Y ) -> ( <. F , P >. e. { <. f , p >. | ( f W p /\ ps ) } <-> ( F W P /\ ch ) ) ) |
| 9 |
5 8
|
sylan9bb |
|- ( ( ph /\ ( F e. X /\ P e. Y ) ) -> ( F M P <-> ( F W P /\ ch ) ) ) |
| 10 |
9
|
ex |
|- ( ph -> ( ( F e. X /\ P e. Y ) -> ( F M P <-> ( F W P /\ ch ) ) ) ) |