| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ancom |  |-  ( ( A C_ B /\ B C_ A ) <-> ( B C_ A /\ A C_ B ) ) | 
						
							| 2 |  | sscon34b |  |-  ( ( B C_ C /\ A C_ C ) -> ( B C_ A <-> ( C \ A ) C_ ( C \ B ) ) ) | 
						
							| 3 | 2 | ancoms |  |-  ( ( A C_ C /\ B C_ C ) -> ( B C_ A <-> ( C \ A ) C_ ( C \ B ) ) ) | 
						
							| 4 |  | sscon34b |  |-  ( ( A C_ C /\ B C_ C ) -> ( A C_ B <-> ( C \ B ) C_ ( C \ A ) ) ) | 
						
							| 5 | 3 4 | anbi12d |  |-  ( ( A C_ C /\ B C_ C ) -> ( ( B C_ A /\ A C_ B ) <-> ( ( C \ A ) C_ ( C \ B ) /\ ( C \ B ) C_ ( C \ A ) ) ) ) | 
						
							| 6 | 1 5 | bitrid |  |-  ( ( A C_ C /\ B C_ C ) -> ( ( A C_ B /\ B C_ A ) <-> ( ( C \ A ) C_ ( C \ B ) /\ ( C \ B ) C_ ( C \ A ) ) ) ) | 
						
							| 7 |  | eqss |  |-  ( A = B <-> ( A C_ B /\ B C_ A ) ) | 
						
							| 8 |  | eqss |  |-  ( ( C \ A ) = ( C \ B ) <-> ( ( C \ A ) C_ ( C \ B ) /\ ( C \ B ) C_ ( C \ A ) ) ) | 
						
							| 9 | 6 7 8 | 3bitr4g |  |-  ( ( A C_ C /\ B C_ C ) -> ( A = B <-> ( C \ A ) = ( C \ B ) ) ) |