Step |
Hyp |
Ref |
Expression |
1 |
|
ancom |
|- ( ( A C_ B /\ B C_ A ) <-> ( B C_ A /\ A C_ B ) ) |
2 |
|
sscon34b |
|- ( ( B C_ C /\ A C_ C ) -> ( B C_ A <-> ( C \ A ) C_ ( C \ B ) ) ) |
3 |
2
|
ancoms |
|- ( ( A C_ C /\ B C_ C ) -> ( B C_ A <-> ( C \ A ) C_ ( C \ B ) ) ) |
4 |
|
sscon34b |
|- ( ( A C_ C /\ B C_ C ) -> ( A C_ B <-> ( C \ B ) C_ ( C \ A ) ) ) |
5 |
3 4
|
anbi12d |
|- ( ( A C_ C /\ B C_ C ) -> ( ( B C_ A /\ A C_ B ) <-> ( ( C \ A ) C_ ( C \ B ) /\ ( C \ B ) C_ ( C \ A ) ) ) ) |
6 |
1 5
|
bitrid |
|- ( ( A C_ C /\ B C_ C ) -> ( ( A C_ B /\ B C_ A ) <-> ( ( C \ A ) C_ ( C \ B ) /\ ( C \ B ) C_ ( C \ A ) ) ) ) |
7 |
|
eqss |
|- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
8 |
|
eqss |
|- ( ( C \ A ) = ( C \ B ) <-> ( ( C \ A ) C_ ( C \ B ) /\ ( C \ B ) C_ ( C \ A ) ) ) |
9 |
6 7 8
|
3bitr4g |
|- ( ( A C_ C /\ B C_ C ) -> ( A = B <-> ( C \ A ) = ( C \ B ) ) ) |