Step |
Hyp |
Ref |
Expression |
1 |
|
rdg.1 |
|- A e. _V |
2 |
|
rdgdmlim |
|- Lim dom rec ( F , A ) |
3 |
|
limomss |
|- ( Lim dom rec ( F , A ) -> _om C_ dom rec ( F , A ) ) |
4 |
2 3
|
ax-mp |
|- _om C_ dom rec ( F , A ) |
5 |
|
peano1 |
|- (/) e. _om |
6 |
4 5
|
sselii |
|- (/) e. dom rec ( F , A ) |
7 |
|
eqid |
|- ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) = ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) |
8 |
|
rdgvalg |
|- ( y e. dom rec ( F , A ) -> ( rec ( F , A ) ` y ) = ( ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) ` ( rec ( F , A ) |` y ) ) ) |
9 |
7 8 1
|
tz7.44-1 |
|- ( (/) e. dom rec ( F , A ) -> ( rec ( F , A ) ` (/) ) = A ) |
10 |
6 9
|
ax-mp |
|- ( rec ( F , A ) ` (/) ) = A |