Description: The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | rdg0g | |- ( A e. C -> ( rec ( F , A ) ` (/) ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgeq2 | |- ( x = A -> rec ( F , x ) = rec ( F , A ) ) |
|
2 | 1 | fveq1d | |- ( x = A -> ( rec ( F , x ) ` (/) ) = ( rec ( F , A ) ` (/) ) ) |
3 | id | |- ( x = A -> x = A ) |
|
4 | 2 3 | eqeq12d | |- ( x = A -> ( ( rec ( F , x ) ` (/) ) = x <-> ( rec ( F , A ) ` (/) ) = A ) ) |
5 | vex | |- x e. _V |
|
6 | 5 | rdg0 | |- ( rec ( F , x ) ` (/) ) = x |
7 | 4 6 | vtoclg | |- ( A e. C -> ( rec ( F , A ) ` (/) ) = A ) |