Description: Equality theorem for the recursive definition generator. (Contributed by Scott Fenton, 28-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdgeq12 | |- ( ( F = G /\ A = B ) -> rec ( F , A ) = rec ( G , B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgeq2 | |- ( A = B -> rec ( F , A ) = rec ( F , B ) ) |
|
| 2 | rdgeq1 | |- ( F = G -> rec ( F , B ) = rec ( G , B ) ) |
|
| 3 | 1 2 | sylan9eqr | |- ( ( F = G /\ A = B ) -> rec ( F , A ) = rec ( G , B ) ) |