Description: Equality theorem for the recursive definition generator. (Contributed by Scott Fenton, 28-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | rdgeq12 | |- ( ( F = G /\ A = B ) -> rec ( F , A ) = rec ( G , B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgeq2 | |- ( A = B -> rec ( F , A ) = rec ( F , B ) ) |
|
2 | rdgeq1 | |- ( F = G -> rec ( F , B ) = rec ( G , B ) ) |
|
3 | 1 2 | sylan9eqr | |- ( ( F = G /\ A = B ) -> rec ( F , A ) = rec ( G , B ) ) |