Metamath Proof Explorer


Theorem rdgfnon

Description: The recursive definition generator is a function on ordinal numbers. (Contributed by NM, 9-Apr-1995) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Assertion rdgfnon
|- rec ( F , A ) Fn On

Proof

Step Hyp Ref Expression
1 df-rdg
 |-  rec ( F , A ) = recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) )
2 1 tfr1
 |-  rec ( F , A ) Fn On