| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rdglim |  |-  ( ( B e. C /\ Lim B ) -> ( rec ( F , A ) ` B ) = U. ( rec ( F , A ) " B ) ) | 
						
							| 2 |  | dfima3 |  |-  ( rec ( F , A ) " B ) = { y | E. x ( x e. B /\ <. x , y >. e. rec ( F , A ) ) } | 
						
							| 3 |  | df-rex |  |-  ( E. x e. B y = ( rec ( F , A ) ` x ) <-> E. x ( x e. B /\ y = ( rec ( F , A ) ` x ) ) ) | 
						
							| 4 |  | limord |  |-  ( Lim B -> Ord B ) | 
						
							| 5 |  | ordelord |  |-  ( ( Ord B /\ x e. B ) -> Ord x ) | 
						
							| 6 | 5 | ex |  |-  ( Ord B -> ( x e. B -> Ord x ) ) | 
						
							| 7 |  | vex |  |-  x e. _V | 
						
							| 8 | 7 | elon |  |-  ( x e. On <-> Ord x ) | 
						
							| 9 | 6 8 | imbitrrdi |  |-  ( Ord B -> ( x e. B -> x e. On ) ) | 
						
							| 10 | 4 9 | syl |  |-  ( Lim B -> ( x e. B -> x e. On ) ) | 
						
							| 11 |  | eqcom |  |-  ( y = ( rec ( F , A ) ` x ) <-> ( rec ( F , A ) ` x ) = y ) | 
						
							| 12 |  | rdgfnon |  |-  rec ( F , A ) Fn On | 
						
							| 13 |  | fnopfvb |  |-  ( ( rec ( F , A ) Fn On /\ x e. On ) -> ( ( rec ( F , A ) ` x ) = y <-> <. x , y >. e. rec ( F , A ) ) ) | 
						
							| 14 | 12 13 | mpan |  |-  ( x e. On -> ( ( rec ( F , A ) ` x ) = y <-> <. x , y >. e. rec ( F , A ) ) ) | 
						
							| 15 | 11 14 | bitrid |  |-  ( x e. On -> ( y = ( rec ( F , A ) ` x ) <-> <. x , y >. e. rec ( F , A ) ) ) | 
						
							| 16 | 10 15 | syl6 |  |-  ( Lim B -> ( x e. B -> ( y = ( rec ( F , A ) ` x ) <-> <. x , y >. e. rec ( F , A ) ) ) ) | 
						
							| 17 | 16 | pm5.32d |  |-  ( Lim B -> ( ( x e. B /\ y = ( rec ( F , A ) ` x ) ) <-> ( x e. B /\ <. x , y >. e. rec ( F , A ) ) ) ) | 
						
							| 18 | 17 | exbidv |  |-  ( Lim B -> ( E. x ( x e. B /\ y = ( rec ( F , A ) ` x ) ) <-> E. x ( x e. B /\ <. x , y >. e. rec ( F , A ) ) ) ) | 
						
							| 19 | 3 18 | bitr2id |  |-  ( Lim B -> ( E. x ( x e. B /\ <. x , y >. e. rec ( F , A ) ) <-> E. x e. B y = ( rec ( F , A ) ` x ) ) ) | 
						
							| 20 | 19 | abbidv |  |-  ( Lim B -> { y | E. x ( x e. B /\ <. x , y >. e. rec ( F , A ) ) } = { y | E. x e. B y = ( rec ( F , A ) ` x ) } ) | 
						
							| 21 | 2 20 | eqtrid |  |-  ( Lim B -> ( rec ( F , A ) " B ) = { y | E. x e. B y = ( rec ( F , A ) ` x ) } ) | 
						
							| 22 | 21 | unieqd |  |-  ( Lim B -> U. ( rec ( F , A ) " B ) = U. { y | E. x e. B y = ( rec ( F , A ) ` x ) } ) | 
						
							| 23 | 22 | adantl |  |-  ( ( B e. C /\ Lim B ) -> U. ( rec ( F , A ) " B ) = U. { y | E. x e. B y = ( rec ( F , A ) ` x ) } ) | 
						
							| 24 | 1 23 | eqtrd |  |-  ( ( B e. C /\ Lim B ) -> ( rec ( F , A ) ` B ) = U. { y | E. x e. B y = ( rec ( F , A ) ` x ) } ) |