Metamath Proof Explorer


Theorem rdglim2a

Description: The value of the recursive definition generator at a limit ordinal, in terms of indexed union of all smaller values. (Contributed by NM, 28-Jun-1998)

Ref Expression
Assertion rdglim2a
|- ( ( B e. C /\ Lim B ) -> ( rec ( F , A ) ` B ) = U_ x e. B ( rec ( F , A ) ` x ) )

Proof

Step Hyp Ref Expression
1 rdglim2
 |-  ( ( B e. C /\ Lim B ) -> ( rec ( F , A ) ` B ) = U. { y | E. x e. B y = ( rec ( F , A ) ` x ) } )
2 fvex
 |-  ( rec ( F , A ) ` x ) e. _V
3 2 dfiun2
 |-  U_ x e. B ( rec ( F , A ) ` x ) = U. { y | E. x e. B y = ( rec ( F , A ) ` x ) }
4 1 3 eqtr4di
 |-  ( ( B e. C /\ Lim B ) -> ( rec ( F , A ) ` B ) = U_ x e. B ( rec ( F , A ) ` x ) )