Step |
Hyp |
Ref |
Expression |
1 |
|
rdgdmlim |
|- Lim dom rec ( F , A ) |
2 |
|
limsuc |
|- ( Lim dom rec ( F , A ) -> ( B e. dom rec ( F , A ) <-> suc B e. dom rec ( F , A ) ) ) |
3 |
1 2
|
ax-mp |
|- ( B e. dom rec ( F , A ) <-> suc B e. dom rec ( F , A ) ) |
4 |
|
eqid |
|- ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) = ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) |
5 |
|
rdgvalg |
|- ( y e. dom rec ( F , A ) -> ( rec ( F , A ) ` y ) = ( ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) ` ( rec ( F , A ) |` y ) ) ) |
6 |
|
rdgseg |
|- ( y e. dom rec ( F , A ) -> ( rec ( F , A ) |` y ) e. _V ) |
7 |
|
rdgfun |
|- Fun rec ( F , A ) |
8 |
|
funfn |
|- ( Fun rec ( F , A ) <-> rec ( F , A ) Fn dom rec ( F , A ) ) |
9 |
7 8
|
mpbi |
|- rec ( F , A ) Fn dom rec ( F , A ) |
10 |
|
limord |
|- ( Lim dom rec ( F , A ) -> Ord dom rec ( F , A ) ) |
11 |
1 10
|
ax-mp |
|- Ord dom rec ( F , A ) |
12 |
4 5 6 9 11
|
tz7.44-2 |
|- ( suc B e. dom rec ( F , A ) -> ( rec ( F , A ) ` suc B ) = ( F ` ( rec ( F , A ) ` B ) ) ) |
13 |
3 12
|
sylbi |
|- ( B e. dom rec ( F , A ) -> ( rec ( F , A ) ` suc B ) = ( F ` ( rec ( F , A ) ` B ) ) ) |