| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rdgsucmpt2.1 |  |-  F = rec ( ( x e. _V |-> C ) , A ) | 
						
							| 2 |  | rdgsucmpt2.2 |  |-  ( y = x -> E = C ) | 
						
							| 3 |  | rdgsucmpt2.3 |  |-  ( y = ( F ` B ) -> E = D ) | 
						
							| 4 |  | nfcv |  |-  F/_ y A | 
						
							| 5 |  | nfcv |  |-  F/_ y B | 
						
							| 6 |  | nfcv |  |-  F/_ y D | 
						
							| 7 | 2 | cbvmptv |  |-  ( y e. _V |-> E ) = ( x e. _V |-> C ) | 
						
							| 8 |  | rdgeq1 |  |-  ( ( y e. _V |-> E ) = ( x e. _V |-> C ) -> rec ( ( y e. _V |-> E ) , A ) = rec ( ( x e. _V |-> C ) , A ) ) | 
						
							| 9 | 7 8 | ax-mp |  |-  rec ( ( y e. _V |-> E ) , A ) = rec ( ( x e. _V |-> C ) , A ) | 
						
							| 10 | 1 9 | eqtr4i |  |-  F = rec ( ( y e. _V |-> E ) , A ) | 
						
							| 11 | 4 5 6 10 3 | rdgsucmptf |  |-  ( ( B e. On /\ D e. V ) -> ( F ` suc B ) = D ) |