Metamath Proof Explorer


Theorem rdiv

Description: Right-division. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses ldiv.a
|- ( ph -> A e. CC )
ldiv.b
|- ( ph -> B e. CC )
ldiv.c
|- ( ph -> C e. CC )
rdiv.an0
|- ( ph -> A =/= 0 )
Assertion rdiv
|- ( ph -> ( ( A x. B ) = C <-> B = ( C / A ) ) )

Proof

Step Hyp Ref Expression
1 ldiv.a
 |-  ( ph -> A e. CC )
2 ldiv.b
 |-  ( ph -> B e. CC )
3 ldiv.c
 |-  ( ph -> C e. CC )
4 rdiv.an0
 |-  ( ph -> A =/= 0 )
5 1 2 mulcomd
 |-  ( ph -> ( A x. B ) = ( B x. A ) )
6 5 eqeq1d
 |-  ( ph -> ( ( A x. B ) = C <-> ( B x. A ) = C ) )
7 2 1 3 4 ldiv
 |-  ( ph -> ( ( B x. A ) = C <-> B = ( C / A ) ) )
8 6 7 bitrd
 |-  ( ph -> ( ( A x. B ) = C <-> B = ( C / A ) ) )