Description: Right-division. (Contributed by BJ, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ldiv.a | |- ( ph -> A e. CC ) |
|
| ldiv.b | |- ( ph -> B e. CC ) |
||
| ldiv.c | |- ( ph -> C e. CC ) |
||
| rdiv.an0 | |- ( ph -> A =/= 0 ) |
||
| Assertion | rdiv | |- ( ph -> ( ( A x. B ) = C <-> B = ( C / A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldiv.a | |- ( ph -> A e. CC ) |
|
| 2 | ldiv.b | |- ( ph -> B e. CC ) |
|
| 3 | ldiv.c | |- ( ph -> C e. CC ) |
|
| 4 | rdiv.an0 | |- ( ph -> A =/= 0 ) |
|
| 5 | 1 2 | mulcomd | |- ( ph -> ( A x. B ) = ( B x. A ) ) |
| 6 | 5 | eqeq1d | |- ( ph -> ( ( A x. B ) = C <-> ( B x. A ) = C ) ) |
| 7 | 2 1 3 4 | ldiv | |- ( ph -> ( ( B x. A ) = C <-> B = ( C / A ) ) ) |
| 8 | 6 7 | bitrd | |- ( ph -> ( ( A x. B ) = C <-> B = ( C / A ) ) ) |