Metamath Proof Explorer


Theorem re1luk3

Description: luk-3 derived from the Tarski-Bernays-Wajsberg axioms.

This theorem, along with re1luk1 and re1luk2 proves that tbw-ax1 , tbw-ax2 , tbw-ax3 , and tbw-ax4 , with ax-mp can be used as a complete axiom system for all of propositional calculus. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re1luk3
|- ( ph -> ( -. ph -> ps ) )

Proof

Step Hyp Ref Expression
1 tbw-negdf
 |-  ( ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> -. ph ) -> F. ) ) -> F. )
2 tbwlem5
 |-  ( ( ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> -. ph ) -> F. ) ) -> F. ) -> ( -. ph -> ( ph -> F. ) ) )
3 1 2 ax-mp
 |-  ( -. ph -> ( ph -> F. ) )
4 tbw-ax4
 |-  ( F. -> ps )
5 tbw-ax1
 |-  ( ( ph -> F. ) -> ( ( F. -> ps ) -> ( ph -> ps ) ) )
6 tbwlem1
 |-  ( ( ( ph -> F. ) -> ( ( F. -> ps ) -> ( ph -> ps ) ) ) -> ( ( F. -> ps ) -> ( ( ph -> F. ) -> ( ph -> ps ) ) ) )
7 5 6 ax-mp
 |-  ( ( F. -> ps ) -> ( ( ph -> F. ) -> ( ph -> ps ) ) )
8 4 7 ax-mp
 |-  ( ( ph -> F. ) -> ( ph -> ps ) )
9 tbwlem1
 |-  ( ( ( ph -> F. ) -> ( ph -> ps ) ) -> ( ph -> ( ( ph -> F. ) -> ps ) ) )
10 8 9 ax-mp
 |-  ( ph -> ( ( ph -> F. ) -> ps ) )
11 tbw-ax1
 |-  ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> ps ) -> ( -. ph -> ps ) ) )
12 3 10 11 mpsyl
 |-  ( ph -> ( -. ph -> ps ) )