Metamath Proof Explorer


Theorem re1tbw1

Description: tbw-ax1 rederived from merco2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re1tbw1
|- ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) )

Proof

Step Hyp Ref Expression
1 mercolem8
 |-  ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) ) )
2 mercolem3
 |-  ( ( ps -> ch ) -> ( ps -> ( ph -> ch ) ) )
3 mercolem6
 |-  ( ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) ) ) -> ( ( ps -> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) ) )
4 1 2 3 mpsyl
 |-  ( ( ps -> ch ) -> ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) )
5 mercolem6
 |-  ( ( ( ps -> ch ) -> ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) )
6 4 5 ax-mp
 |-  ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) )