Metamath Proof Explorer


Theorem re1tbw3

Description: tbw-ax3 rederived from merco2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re1tbw3
|- ( ( ( ph -> ps ) -> ph ) -> ph )

Proof

Step Hyp Ref Expression
1 mercolem2
 |-  ( ( ( ph -> ph ) -> ph ) -> ( ph -> ( ph -> ph ) ) )
2 mercolem2
 |-  ( ( ( ph -> ps ) -> ph ) -> ( ( ( ( ph -> ph ) -> ph ) -> ( ph -> ( ph -> ph ) ) ) -> ( ( ( ph -> ps ) -> ph ) -> ph ) ) )
3 mercolem6
 |-  ( ( ( ( ph -> ps ) -> ph ) -> ( ( ( ( ph -> ph ) -> ph ) -> ( ph -> ( ph -> ph ) ) ) -> ( ( ( ph -> ps ) -> ph ) -> ph ) ) ) -> ( ( ( ( ph -> ph ) -> ph ) -> ( ph -> ( ph -> ph ) ) ) -> ( ( ( ph -> ps ) -> ph ) -> ph ) ) )
4 2 3 ax-mp
 |-  ( ( ( ( ph -> ph ) -> ph ) -> ( ph -> ( ph -> ph ) ) ) -> ( ( ( ph -> ps ) -> ph ) -> ph ) )
5 1 4 ax-mp
 |-  ( ( ( ph -> ps ) -> ph ) -> ph )