Description: tbw-ax4 rederived from merco2 .
This theorem, along with re1tbw1 , re1tbw2 , and re1tbw3 , shows that merco2 , along with ax-mp , can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | re1tbw4 | |- ( F. -> ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | re1tbw3 | |- ( ( ( ph -> ph ) -> ph ) -> ph ) |
|
2 | re1tbw2 | |- ( ph -> ( ( ph -> ph ) -> ph ) ) |
|
3 | re1tbw1 | |- ( ( ph -> ( ( ph -> ph ) -> ph ) ) -> ( ( ( ( ph -> ph ) -> ph ) -> ph ) -> ( ph -> ph ) ) ) |
|
4 | 2 3 | ax-mp | |- ( ( ( ( ph -> ph ) -> ph ) -> ph ) -> ( ph -> ph ) ) |
5 | 1 4 | ax-mp | |- ( ph -> ph ) |
6 | re1tbw3 | |- ( ( ( ( F. -> ph ) -> ph ) -> ( F. -> ph ) ) -> ( F. -> ph ) ) |
|
7 | re1tbw2 | |- ( ( F. -> ph ) -> ( ( ( F. -> ph ) -> ph ) -> ( F. -> ph ) ) ) |
|
8 | re1tbw1 | |- ( ( ( F. -> ph ) -> ( ( ( F. -> ph ) -> ph ) -> ( F. -> ph ) ) ) -> ( ( ( ( ( F. -> ph ) -> ph ) -> ( F. -> ph ) ) -> ( F. -> ph ) ) -> ( ( F. -> ph ) -> ( F. -> ph ) ) ) ) |
|
9 | 7 8 | ax-mp | |- ( ( ( ( ( F. -> ph ) -> ph ) -> ( F. -> ph ) ) -> ( F. -> ph ) ) -> ( ( F. -> ph ) -> ( F. -> ph ) ) ) |
10 | 6 9 | ax-mp | |- ( ( F. -> ph ) -> ( F. -> ph ) ) |
11 | mercolem3 | |- ( ( ( F. -> ph ) -> ph ) -> ( ( F. -> ph ) -> ( F. -> ph ) ) ) |
|
12 | merco2 | |- ( ( ( ( F. -> ph ) -> ph ) -> ( ( F. -> ph ) -> ( F. -> ph ) ) ) -> ( ( ( F. -> ph ) -> ( F. -> ph ) ) -> ( ( ph -> ph ) -> ( ( ph -> ph ) -> ( F. -> ph ) ) ) ) ) |
|
13 | 11 12 | ax-mp | |- ( ( ( F. -> ph ) -> ( F. -> ph ) ) -> ( ( ph -> ph ) -> ( ( ph -> ph ) -> ( F. -> ph ) ) ) ) |
14 | 10 13 | ax-mp | |- ( ( ph -> ph ) -> ( ( ph -> ph ) -> ( F. -> ph ) ) ) |
15 | 5 14 | ax-mp | |- ( ( ph -> ph ) -> ( F. -> ph ) ) |
16 | 5 15 | ax-mp | |- ( F. -> ph ) |