Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( topGen ` ( (,) " ( QQ X. QQ ) ) ) = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
2 |
1
|
tgqioo |
|- ( topGen ` ran (,) ) = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
3 |
|
qtopbas |
|- ( (,) " ( QQ X. QQ ) ) e. TopBases |
4 |
|
omelon |
|- _om e. On |
5 |
|
qnnen |
|- QQ ~~ NN |
6 |
|
xpen |
|- ( ( QQ ~~ NN /\ QQ ~~ NN ) -> ( QQ X. QQ ) ~~ ( NN X. NN ) ) |
7 |
5 5 6
|
mp2an |
|- ( QQ X. QQ ) ~~ ( NN X. NN ) |
8 |
|
xpnnen |
|- ( NN X. NN ) ~~ NN |
9 |
7 8
|
entri |
|- ( QQ X. QQ ) ~~ NN |
10 |
|
nnenom |
|- NN ~~ _om |
11 |
9 10
|
entr2i |
|- _om ~~ ( QQ X. QQ ) |
12 |
|
isnumi |
|- ( ( _om e. On /\ _om ~~ ( QQ X. QQ ) ) -> ( QQ X. QQ ) e. dom card ) |
13 |
4 11 12
|
mp2an |
|- ( QQ X. QQ ) e. dom card |
14 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
15 |
|
ffun |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> Fun (,) ) |
16 |
14 15
|
ax-mp |
|- Fun (,) |
17 |
|
qssre |
|- QQ C_ RR |
18 |
|
ressxr |
|- RR C_ RR* |
19 |
17 18
|
sstri |
|- QQ C_ RR* |
20 |
|
xpss12 |
|- ( ( QQ C_ RR* /\ QQ C_ RR* ) -> ( QQ X. QQ ) C_ ( RR* X. RR* ) ) |
21 |
19 19 20
|
mp2an |
|- ( QQ X. QQ ) C_ ( RR* X. RR* ) |
22 |
14
|
fdmi |
|- dom (,) = ( RR* X. RR* ) |
23 |
21 22
|
sseqtrri |
|- ( QQ X. QQ ) C_ dom (,) |
24 |
|
fores |
|- ( ( Fun (,) /\ ( QQ X. QQ ) C_ dom (,) ) -> ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) ) |
25 |
16 23 24
|
mp2an |
|- ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) |
26 |
|
fodomnum |
|- ( ( QQ X. QQ ) e. dom card -> ( ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) -> ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) ) ) |
27 |
13 25 26
|
mp2 |
|- ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) |
28 |
9 10
|
entri |
|- ( QQ X. QQ ) ~~ _om |
29 |
|
domentr |
|- ( ( ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) /\ ( QQ X. QQ ) ~~ _om ) -> ( (,) " ( QQ X. QQ ) ) ~<_ _om ) |
30 |
27 28 29
|
mp2an |
|- ( (,) " ( QQ X. QQ ) ) ~<_ _om |
31 |
|
2ndci |
|- ( ( ( (,) " ( QQ X. QQ ) ) e. TopBases /\ ( (,) " ( QQ X. QQ ) ) ~<_ _om ) -> ( topGen ` ( (,) " ( QQ X. QQ ) ) ) e. 2ndc ) |
32 |
3 30 31
|
mp2an |
|- ( topGen ` ( (,) " ( QQ X. QQ ) ) ) e. 2ndc |
33 |
2 32
|
eqeltri |
|- ( topGen ` ran (,) ) e. 2ndc |