| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( topGen ` ( (,) " ( QQ X. QQ ) ) ) = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) | 
						
							| 2 | 1 | tgqioo |  |-  ( topGen ` ran (,) ) = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) | 
						
							| 3 |  | qtopbas |  |-  ( (,) " ( QQ X. QQ ) ) e. TopBases | 
						
							| 4 |  | omelon |  |-  _om e. On | 
						
							| 5 |  | qnnen |  |-  QQ ~~ NN | 
						
							| 6 |  | xpen |  |-  ( ( QQ ~~ NN /\ QQ ~~ NN ) -> ( QQ X. QQ ) ~~ ( NN X. NN ) ) | 
						
							| 7 | 5 5 6 | mp2an |  |-  ( QQ X. QQ ) ~~ ( NN X. NN ) | 
						
							| 8 |  | xpnnen |  |-  ( NN X. NN ) ~~ NN | 
						
							| 9 | 7 8 | entri |  |-  ( QQ X. QQ ) ~~ NN | 
						
							| 10 |  | nnenom |  |-  NN ~~ _om | 
						
							| 11 | 9 10 | entr2i |  |-  _om ~~ ( QQ X. QQ ) | 
						
							| 12 |  | isnumi |  |-  ( ( _om e. On /\ _om ~~ ( QQ X. QQ ) ) -> ( QQ X. QQ ) e. dom card ) | 
						
							| 13 | 4 11 12 | mp2an |  |-  ( QQ X. QQ ) e. dom card | 
						
							| 14 |  | ioof |  |-  (,) : ( RR* X. RR* ) --> ~P RR | 
						
							| 15 |  | ffun |  |-  ( (,) : ( RR* X. RR* ) --> ~P RR -> Fun (,) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  Fun (,) | 
						
							| 17 |  | qssre |  |-  QQ C_ RR | 
						
							| 18 |  | ressxr |  |-  RR C_ RR* | 
						
							| 19 | 17 18 | sstri |  |-  QQ C_ RR* | 
						
							| 20 |  | xpss12 |  |-  ( ( QQ C_ RR* /\ QQ C_ RR* ) -> ( QQ X. QQ ) C_ ( RR* X. RR* ) ) | 
						
							| 21 | 19 19 20 | mp2an |  |-  ( QQ X. QQ ) C_ ( RR* X. RR* ) | 
						
							| 22 | 14 | fdmi |  |-  dom (,) = ( RR* X. RR* ) | 
						
							| 23 | 21 22 | sseqtrri |  |-  ( QQ X. QQ ) C_ dom (,) | 
						
							| 24 |  | fores |  |-  ( ( Fun (,) /\ ( QQ X. QQ ) C_ dom (,) ) -> ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) ) | 
						
							| 25 | 16 23 24 | mp2an |  |-  ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) | 
						
							| 26 |  | fodomnum |  |-  ( ( QQ X. QQ ) e. dom card -> ( ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) -> ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) ) ) | 
						
							| 27 | 13 25 26 | mp2 |  |-  ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) | 
						
							| 28 | 9 10 | entri |  |-  ( QQ X. QQ ) ~~ _om | 
						
							| 29 |  | domentr |  |-  ( ( ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) /\ ( QQ X. QQ ) ~~ _om ) -> ( (,) " ( QQ X. QQ ) ) ~<_ _om ) | 
						
							| 30 | 27 28 29 | mp2an |  |-  ( (,) " ( QQ X. QQ ) ) ~<_ _om | 
						
							| 31 |  | 2ndci |  |-  ( ( ( (,) " ( QQ X. QQ ) ) e. TopBases /\ ( (,) " ( QQ X. QQ ) ) ~<_ _om ) -> ( topGen ` ( (,) " ( QQ X. QQ ) ) ) e. 2ndc ) | 
						
							| 32 | 3 30 31 | mp2an |  |-  ( topGen ` ( (,) " ( QQ X. QQ ) ) ) e. 2ndc | 
						
							| 33 | 2 32 | eqeltri |  |-  ( topGen ` ran (,) ) e. 2ndc |