| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltadd2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( C + A ) < ( C + B ) ) ) |
| 2 |
1
|
notbid |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. A < B <-> -. ( C + A ) < ( C + B ) ) ) |
| 3 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
| 4 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
| 5 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
| 6 |
3 4 5
|
ltadd2d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B < A <-> ( C + B ) < ( C + A ) ) ) |
| 7 |
6
|
notbid |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. B < A <-> -. ( C + B ) < ( C + A ) ) ) |
| 8 |
2 7
|
anbi12d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( -. A < B /\ -. B < A ) <-> ( -. ( C + A ) < ( C + B ) /\ -. ( C + B ) < ( C + A ) ) ) ) |
| 9 |
4 3
|
lttri3d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) |
| 10 |
5 4
|
readdcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + A ) e. RR ) |
| 11 |
5 3
|
readdcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + B ) e. RR ) |
| 12 |
10 11
|
lttri3d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + A ) = ( C + B ) <-> ( -. ( C + A ) < ( C + B ) /\ -. ( C + B ) < ( C + A ) ) ) ) |
| 13 |
8 9 12
|
3bitr4rd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + A ) = ( C + B ) <-> A = B ) ) |