Description: Real part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recld.1 | |- ( ph -> A e. CC ) | |
| readdd.2 | |- ( ph -> B e. CC ) | ||
| Assertion | readdd | |- ( ph -> ( Re ` ( A + B ) ) = ( ( Re ` A ) + ( Re ` B ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | recld.1 | |- ( ph -> A e. CC ) | |
| 2 | readdd.2 | |- ( ph -> B e. CC ) | |
| 3 | readd | |- ( ( A e. CC /\ B e. CC ) -> ( Re ` ( A + B ) ) = ( ( Re ` A ) + ( Re ` B ) ) ) | |
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( Re ` ( A + B ) ) = ( ( Re ` A ) + ( Re ` B ) ) ) |