Step |
Hyp |
Ref |
Expression |
1 |
|
neghalfpire |
|- -u ( _pi / 2 ) e. RR |
2 |
1
|
rexri |
|- -u ( _pi / 2 ) e. RR* |
3 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
4 |
3
|
rexri |
|- ( _pi / 2 ) e. RR* |
5 |
|
pirp |
|- _pi e. RR+ |
6 |
|
rphalfcl |
|- ( _pi e. RR+ -> ( _pi / 2 ) e. RR+ ) |
7 |
5 6
|
ax-mp |
|- ( _pi / 2 ) e. RR+ |
8 |
|
rpgt0 |
|- ( ( _pi / 2 ) e. RR+ -> 0 < ( _pi / 2 ) ) |
9 |
7 8
|
ax-mp |
|- 0 < ( _pi / 2 ) |
10 |
|
lt0neg2 |
|- ( ( _pi / 2 ) e. RR -> ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) ) |
11 |
3 10
|
ax-mp |
|- ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) |
12 |
9 11
|
mpbi |
|- -u ( _pi / 2 ) < 0 |
13 |
|
0re |
|- 0 e. RR |
14 |
1 13 3
|
lttri |
|- ( ( -u ( _pi / 2 ) < 0 /\ 0 < ( _pi / 2 ) ) -> -u ( _pi / 2 ) < ( _pi / 2 ) ) |
15 |
12 9 14
|
mp2an |
|- -u ( _pi / 2 ) < ( _pi / 2 ) |
16 |
1 3 15
|
ltleii |
|- -u ( _pi / 2 ) <_ ( _pi / 2 ) |
17 |
|
prunioo |
|- ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* /\ -u ( _pi / 2 ) <_ ( _pi / 2 ) ) -> ( ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) u. { -u ( _pi / 2 ) , ( _pi / 2 ) } ) = ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
18 |
2 4 16 17
|
mp3an |
|- ( ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) u. { -u ( _pi / 2 ) , ( _pi / 2 ) } ) = ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |
19 |
18
|
eleq2i |
|- ( A e. ( ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) u. { -u ( _pi / 2 ) , ( _pi / 2 ) } ) <-> A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
20 |
|
elun |
|- ( A e. ( ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) u. { -u ( _pi / 2 ) , ( _pi / 2 ) } ) <-> ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) \/ A e. { -u ( _pi / 2 ) , ( _pi / 2 ) } ) ) |
21 |
19 20
|
bitr3i |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) \/ A e. { -u ( _pi / 2 ) , ( _pi / 2 ) } ) ) |
22 |
|
elioore |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. RR ) |
23 |
22
|
recnd |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. CC ) |
24 |
22
|
rered |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( Re ` A ) = A ) |
25 |
|
id |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
26 |
24 25
|
eqeltrd |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
27 |
|
asinsin |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arcsin ` ( sin ` A ) ) = A ) |
28 |
23 26 27
|
syl2anc |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( arcsin ` ( sin ` A ) ) = A ) |
29 |
|
elpri |
|- ( A e. { -u ( _pi / 2 ) , ( _pi / 2 ) } -> ( A = -u ( _pi / 2 ) \/ A = ( _pi / 2 ) ) ) |
30 |
|
ax-1cn |
|- 1 e. CC |
31 |
|
asinneg |
|- ( 1 e. CC -> ( arcsin ` -u 1 ) = -u ( arcsin ` 1 ) ) |
32 |
30 31
|
ax-mp |
|- ( arcsin ` -u 1 ) = -u ( arcsin ` 1 ) |
33 |
|
asin1 |
|- ( arcsin ` 1 ) = ( _pi / 2 ) |
34 |
33
|
negeqi |
|- -u ( arcsin ` 1 ) = -u ( _pi / 2 ) |
35 |
32 34
|
eqtri |
|- ( arcsin ` -u 1 ) = -u ( _pi / 2 ) |
36 |
|
fveq2 |
|- ( A = -u ( _pi / 2 ) -> ( sin ` A ) = ( sin ` -u ( _pi / 2 ) ) ) |
37 |
3
|
recni |
|- ( _pi / 2 ) e. CC |
38 |
|
sinneg |
|- ( ( _pi / 2 ) e. CC -> ( sin ` -u ( _pi / 2 ) ) = -u ( sin ` ( _pi / 2 ) ) ) |
39 |
37 38
|
ax-mp |
|- ( sin ` -u ( _pi / 2 ) ) = -u ( sin ` ( _pi / 2 ) ) |
40 |
|
sinhalfpi |
|- ( sin ` ( _pi / 2 ) ) = 1 |
41 |
40
|
negeqi |
|- -u ( sin ` ( _pi / 2 ) ) = -u 1 |
42 |
39 41
|
eqtri |
|- ( sin ` -u ( _pi / 2 ) ) = -u 1 |
43 |
36 42
|
eqtrdi |
|- ( A = -u ( _pi / 2 ) -> ( sin ` A ) = -u 1 ) |
44 |
43
|
fveq2d |
|- ( A = -u ( _pi / 2 ) -> ( arcsin ` ( sin ` A ) ) = ( arcsin ` -u 1 ) ) |
45 |
|
id |
|- ( A = -u ( _pi / 2 ) -> A = -u ( _pi / 2 ) ) |
46 |
35 44 45
|
3eqtr4a |
|- ( A = -u ( _pi / 2 ) -> ( arcsin ` ( sin ` A ) ) = A ) |
47 |
|
fveq2 |
|- ( A = ( _pi / 2 ) -> ( sin ` A ) = ( sin ` ( _pi / 2 ) ) ) |
48 |
47 40
|
eqtrdi |
|- ( A = ( _pi / 2 ) -> ( sin ` A ) = 1 ) |
49 |
48
|
fveq2d |
|- ( A = ( _pi / 2 ) -> ( arcsin ` ( sin ` A ) ) = ( arcsin ` 1 ) ) |
50 |
|
id |
|- ( A = ( _pi / 2 ) -> A = ( _pi / 2 ) ) |
51 |
33 49 50
|
3eqtr4a |
|- ( A = ( _pi / 2 ) -> ( arcsin ` ( sin ` A ) ) = A ) |
52 |
46 51
|
jaoi |
|- ( ( A = -u ( _pi / 2 ) \/ A = ( _pi / 2 ) ) -> ( arcsin ` ( sin ` A ) ) = A ) |
53 |
29 52
|
syl |
|- ( A e. { -u ( _pi / 2 ) , ( _pi / 2 ) } -> ( arcsin ` ( sin ` A ) ) = A ) |
54 |
28 53
|
jaoi |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) \/ A e. { -u ( _pi / 2 ) , ( _pi / 2 ) } ) -> ( arcsin ` ( sin ` A ) ) = A ) |
55 |
21 54
|
sylbi |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( arcsin ` ( sin ` A ) ) = A ) |