| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 2 |
|
zbtwnre |
|- ( -u A e. RR -> E! y e. ZZ ( -u A <_ y /\ y < ( -u A + 1 ) ) ) |
| 3 |
1 2
|
syl |
|- ( A e. RR -> E! y e. ZZ ( -u A <_ y /\ y < ( -u A + 1 ) ) ) |
| 4 |
|
znegcl |
|- ( x e. ZZ -> -u x e. ZZ ) |
| 5 |
|
znegcl |
|- ( y e. ZZ -> -u y e. ZZ ) |
| 6 |
|
zcn |
|- ( y e. ZZ -> y e. CC ) |
| 7 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
| 8 |
|
negcon2 |
|- ( ( y e. CC /\ x e. CC ) -> ( y = -u x <-> x = -u y ) ) |
| 9 |
6 7 8
|
syl2an |
|- ( ( y e. ZZ /\ x e. ZZ ) -> ( y = -u x <-> x = -u y ) ) |
| 10 |
5 9
|
reuhyp |
|- ( y e. ZZ -> E! x e. ZZ y = -u x ) |
| 11 |
|
breq2 |
|- ( y = -u x -> ( -u A <_ y <-> -u A <_ -u x ) ) |
| 12 |
|
breq1 |
|- ( y = -u x -> ( y < ( -u A + 1 ) <-> -u x < ( -u A + 1 ) ) ) |
| 13 |
11 12
|
anbi12d |
|- ( y = -u x -> ( ( -u A <_ y /\ y < ( -u A + 1 ) ) <-> ( -u A <_ -u x /\ -u x < ( -u A + 1 ) ) ) ) |
| 14 |
4 10 13
|
reuxfr1 |
|- ( E! y e. ZZ ( -u A <_ y /\ y < ( -u A + 1 ) ) <-> E! x e. ZZ ( -u A <_ -u x /\ -u x < ( -u A + 1 ) ) ) |
| 15 |
|
zre |
|- ( x e. ZZ -> x e. RR ) |
| 16 |
|
leneg |
|- ( ( x e. RR /\ A e. RR ) -> ( x <_ A <-> -u A <_ -u x ) ) |
| 17 |
16
|
ancoms |
|- ( ( A e. RR /\ x e. RR ) -> ( x <_ A <-> -u A <_ -u x ) ) |
| 18 |
|
peano2rem |
|- ( A e. RR -> ( A - 1 ) e. RR ) |
| 19 |
|
ltneg |
|- ( ( ( A - 1 ) e. RR /\ x e. RR ) -> ( ( A - 1 ) < x <-> -u x < -u ( A - 1 ) ) ) |
| 20 |
18 19
|
sylan |
|- ( ( A e. RR /\ x e. RR ) -> ( ( A - 1 ) < x <-> -u x < -u ( A - 1 ) ) ) |
| 21 |
|
1re |
|- 1 e. RR |
| 22 |
|
ltsubadd |
|- ( ( A e. RR /\ 1 e. RR /\ x e. RR ) -> ( ( A - 1 ) < x <-> A < ( x + 1 ) ) ) |
| 23 |
21 22
|
mp3an2 |
|- ( ( A e. RR /\ x e. RR ) -> ( ( A - 1 ) < x <-> A < ( x + 1 ) ) ) |
| 24 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 25 |
|
ax-1cn |
|- 1 e. CC |
| 26 |
|
negsubdi |
|- ( ( A e. CC /\ 1 e. CC ) -> -u ( A - 1 ) = ( -u A + 1 ) ) |
| 27 |
24 25 26
|
sylancl |
|- ( A e. RR -> -u ( A - 1 ) = ( -u A + 1 ) ) |
| 28 |
27
|
adantr |
|- ( ( A e. RR /\ x e. RR ) -> -u ( A - 1 ) = ( -u A + 1 ) ) |
| 29 |
28
|
breq2d |
|- ( ( A e. RR /\ x e. RR ) -> ( -u x < -u ( A - 1 ) <-> -u x < ( -u A + 1 ) ) ) |
| 30 |
20 23 29
|
3bitr3d |
|- ( ( A e. RR /\ x e. RR ) -> ( A < ( x + 1 ) <-> -u x < ( -u A + 1 ) ) ) |
| 31 |
17 30
|
anbi12d |
|- ( ( A e. RR /\ x e. RR ) -> ( ( x <_ A /\ A < ( x + 1 ) ) <-> ( -u A <_ -u x /\ -u x < ( -u A + 1 ) ) ) ) |
| 32 |
15 31
|
sylan2 |
|- ( ( A e. RR /\ x e. ZZ ) -> ( ( x <_ A /\ A < ( x + 1 ) ) <-> ( -u A <_ -u x /\ -u x < ( -u A + 1 ) ) ) ) |
| 33 |
32
|
bicomd |
|- ( ( A e. RR /\ x e. ZZ ) -> ( ( -u A <_ -u x /\ -u x < ( -u A + 1 ) ) <-> ( x <_ A /\ A < ( x + 1 ) ) ) ) |
| 34 |
33
|
reubidva |
|- ( A e. RR -> ( E! x e. ZZ ( -u A <_ -u x /\ -u x < ( -u A + 1 ) ) <-> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) |
| 35 |
14 34
|
bitrid |
|- ( A e. RR -> ( E! y e. ZZ ( -u A <_ y /\ y < ( -u A + 1 ) ) <-> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) |
| 36 |
3 35
|
mpbid |
|- ( A e. RR -> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) |