Metamath Proof Explorer


Theorem rec11ii

Description: Reciprocal is one-to-one. (Contributed by NM, 16-Sep-1999)

Ref Expression
Hypotheses divclz.1
|- A e. CC
divclz.2
|- B e. CC
divneq0.3
|- A =/= 0
divneq0.4
|- B =/= 0
Assertion rec11ii
|- ( ( 1 / A ) = ( 1 / B ) <-> A = B )

Proof

Step Hyp Ref Expression
1 divclz.1
 |-  A e. CC
2 divclz.2
 |-  B e. CC
3 divneq0.3
 |-  A =/= 0
4 divneq0.4
 |-  B =/= 0
5 1 2 rec11i
 |-  ( ( A =/= 0 /\ B =/= 0 ) -> ( ( 1 / A ) = ( 1 / B ) <-> A = B ) )
6 3 4 5 mp2an
 |-  ( ( 1 / A ) = ( 1 / B ) <-> A = B )