| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1cn |  |-  1 e. CC | 
						
							| 2 |  | fvoveq1 |  |-  ( x = 1 -> ( Re ` ( x x. A ) ) = ( Re ` ( 1 x. A ) ) ) | 
						
							| 3 |  | fvoveq1 |  |-  ( x = 1 -> ( Re ` ( x x. B ) ) = ( Re ` ( 1 x. B ) ) ) | 
						
							| 4 | 2 3 | eqeq12d |  |-  ( x = 1 -> ( ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) <-> ( Re ` ( 1 x. A ) ) = ( Re ` ( 1 x. B ) ) ) ) | 
						
							| 5 | 4 | rspcv |  |-  ( 1 e. CC -> ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( Re ` ( 1 x. A ) ) = ( Re ` ( 1 x. B ) ) ) ) | 
						
							| 6 | 1 5 | ax-mp |  |-  ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( Re ` ( 1 x. A ) ) = ( Re ` ( 1 x. B ) ) ) | 
						
							| 7 |  | negicn |  |-  -u _i e. CC | 
						
							| 8 |  | fvoveq1 |  |-  ( x = -u _i -> ( Re ` ( x x. A ) ) = ( Re ` ( -u _i x. A ) ) ) | 
						
							| 9 |  | fvoveq1 |  |-  ( x = -u _i -> ( Re ` ( x x. B ) ) = ( Re ` ( -u _i x. B ) ) ) | 
						
							| 10 | 8 9 | eqeq12d |  |-  ( x = -u _i -> ( ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) <-> ( Re ` ( -u _i x. A ) ) = ( Re ` ( -u _i x. B ) ) ) ) | 
						
							| 11 | 10 | rspcv |  |-  ( -u _i e. CC -> ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( Re ` ( -u _i x. A ) ) = ( Re ` ( -u _i x. B ) ) ) ) | 
						
							| 12 | 7 11 | ax-mp |  |-  ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( Re ` ( -u _i x. A ) ) = ( Re ` ( -u _i x. B ) ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( _i x. ( Re ` ( -u _i x. A ) ) ) = ( _i x. ( Re ` ( -u _i x. B ) ) ) ) | 
						
							| 14 | 6 13 | oveq12d |  |-  ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( ( Re ` ( 1 x. A ) ) + ( _i x. ( Re ` ( -u _i x. A ) ) ) ) = ( ( Re ` ( 1 x. B ) ) + ( _i x. ( Re ` ( -u _i x. B ) ) ) ) ) | 
						
							| 15 |  | replim |  |-  ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) | 
						
							| 16 |  | mullid |  |-  ( A e. CC -> ( 1 x. A ) = A ) | 
						
							| 17 | 16 | eqcomd |  |-  ( A e. CC -> A = ( 1 x. A ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( A e. CC -> ( Re ` A ) = ( Re ` ( 1 x. A ) ) ) | 
						
							| 19 |  | imre |  |-  ( A e. CC -> ( Im ` A ) = ( Re ` ( -u _i x. A ) ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( A e. CC -> ( _i x. ( Im ` A ) ) = ( _i x. ( Re ` ( -u _i x. A ) ) ) ) | 
						
							| 21 | 18 20 | oveq12d |  |-  ( A e. CC -> ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) = ( ( Re ` ( 1 x. A ) ) + ( _i x. ( Re ` ( -u _i x. A ) ) ) ) ) | 
						
							| 22 | 15 21 | eqtrd |  |-  ( A e. CC -> A = ( ( Re ` ( 1 x. A ) ) + ( _i x. ( Re ` ( -u _i x. A ) ) ) ) ) | 
						
							| 23 |  | replim |  |-  ( B e. CC -> B = ( ( Re ` B ) + ( _i x. ( Im ` B ) ) ) ) | 
						
							| 24 |  | mullid |  |-  ( B e. CC -> ( 1 x. B ) = B ) | 
						
							| 25 | 24 | eqcomd |  |-  ( B e. CC -> B = ( 1 x. B ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( B e. CC -> ( Re ` B ) = ( Re ` ( 1 x. B ) ) ) | 
						
							| 27 |  | imre |  |-  ( B e. CC -> ( Im ` B ) = ( Re ` ( -u _i x. B ) ) ) | 
						
							| 28 | 27 | oveq2d |  |-  ( B e. CC -> ( _i x. ( Im ` B ) ) = ( _i x. ( Re ` ( -u _i x. B ) ) ) ) | 
						
							| 29 | 26 28 | oveq12d |  |-  ( B e. CC -> ( ( Re ` B ) + ( _i x. ( Im ` B ) ) ) = ( ( Re ` ( 1 x. B ) ) + ( _i x. ( Re ` ( -u _i x. B ) ) ) ) ) | 
						
							| 30 | 23 29 | eqtrd |  |-  ( B e. CC -> B = ( ( Re ` ( 1 x. B ) ) + ( _i x. ( Re ` ( -u _i x. B ) ) ) ) ) | 
						
							| 31 | 22 30 | eqeqan12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( A = B <-> ( ( Re ` ( 1 x. A ) ) + ( _i x. ( Re ` ( -u _i x. A ) ) ) ) = ( ( Re ` ( 1 x. B ) ) + ( _i x. ( Re ` ( -u _i x. B ) ) ) ) ) ) | 
						
							| 32 | 14 31 | imbitrrid |  |-  ( ( A e. CC /\ B e. CC ) -> ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> A = B ) ) | 
						
							| 33 |  | oveq2 |  |-  ( A = B -> ( x x. A ) = ( x x. B ) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( A = B -> ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) ) | 
						
							| 35 | 34 | ralrimivw |  |-  ( A = B -> A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) ) | 
						
							| 36 | 32 35 | impbid1 |  |-  ( ( A e. CC /\ B e. CC ) -> ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) <-> A = B ) ) |