Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
|- 1 e. CC |
2 |
|
fvoveq1 |
|- ( x = 1 -> ( Re ` ( x x. A ) ) = ( Re ` ( 1 x. A ) ) ) |
3 |
|
fvoveq1 |
|- ( x = 1 -> ( Re ` ( x x. B ) ) = ( Re ` ( 1 x. B ) ) ) |
4 |
2 3
|
eqeq12d |
|- ( x = 1 -> ( ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) <-> ( Re ` ( 1 x. A ) ) = ( Re ` ( 1 x. B ) ) ) ) |
5 |
4
|
rspcv |
|- ( 1 e. CC -> ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( Re ` ( 1 x. A ) ) = ( Re ` ( 1 x. B ) ) ) ) |
6 |
1 5
|
ax-mp |
|- ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( Re ` ( 1 x. A ) ) = ( Re ` ( 1 x. B ) ) ) |
7 |
|
negicn |
|- -u _i e. CC |
8 |
|
fvoveq1 |
|- ( x = -u _i -> ( Re ` ( x x. A ) ) = ( Re ` ( -u _i x. A ) ) ) |
9 |
|
fvoveq1 |
|- ( x = -u _i -> ( Re ` ( x x. B ) ) = ( Re ` ( -u _i x. B ) ) ) |
10 |
8 9
|
eqeq12d |
|- ( x = -u _i -> ( ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) <-> ( Re ` ( -u _i x. A ) ) = ( Re ` ( -u _i x. B ) ) ) ) |
11 |
10
|
rspcv |
|- ( -u _i e. CC -> ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( Re ` ( -u _i x. A ) ) = ( Re ` ( -u _i x. B ) ) ) ) |
12 |
7 11
|
ax-mp |
|- ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( Re ` ( -u _i x. A ) ) = ( Re ` ( -u _i x. B ) ) ) |
13 |
12
|
oveq2d |
|- ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( _i x. ( Re ` ( -u _i x. A ) ) ) = ( _i x. ( Re ` ( -u _i x. B ) ) ) ) |
14 |
6 13
|
oveq12d |
|- ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( ( Re ` ( 1 x. A ) ) + ( _i x. ( Re ` ( -u _i x. A ) ) ) ) = ( ( Re ` ( 1 x. B ) ) + ( _i x. ( Re ` ( -u _i x. B ) ) ) ) ) |
15 |
|
replim |
|- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
16 |
|
mulid2 |
|- ( A e. CC -> ( 1 x. A ) = A ) |
17 |
16
|
eqcomd |
|- ( A e. CC -> A = ( 1 x. A ) ) |
18 |
17
|
fveq2d |
|- ( A e. CC -> ( Re ` A ) = ( Re ` ( 1 x. A ) ) ) |
19 |
|
imre |
|- ( A e. CC -> ( Im ` A ) = ( Re ` ( -u _i x. A ) ) ) |
20 |
19
|
oveq2d |
|- ( A e. CC -> ( _i x. ( Im ` A ) ) = ( _i x. ( Re ` ( -u _i x. A ) ) ) ) |
21 |
18 20
|
oveq12d |
|- ( A e. CC -> ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) = ( ( Re ` ( 1 x. A ) ) + ( _i x. ( Re ` ( -u _i x. A ) ) ) ) ) |
22 |
15 21
|
eqtrd |
|- ( A e. CC -> A = ( ( Re ` ( 1 x. A ) ) + ( _i x. ( Re ` ( -u _i x. A ) ) ) ) ) |
23 |
|
replim |
|- ( B e. CC -> B = ( ( Re ` B ) + ( _i x. ( Im ` B ) ) ) ) |
24 |
|
mulid2 |
|- ( B e. CC -> ( 1 x. B ) = B ) |
25 |
24
|
eqcomd |
|- ( B e. CC -> B = ( 1 x. B ) ) |
26 |
25
|
fveq2d |
|- ( B e. CC -> ( Re ` B ) = ( Re ` ( 1 x. B ) ) ) |
27 |
|
imre |
|- ( B e. CC -> ( Im ` B ) = ( Re ` ( -u _i x. B ) ) ) |
28 |
27
|
oveq2d |
|- ( B e. CC -> ( _i x. ( Im ` B ) ) = ( _i x. ( Re ` ( -u _i x. B ) ) ) ) |
29 |
26 28
|
oveq12d |
|- ( B e. CC -> ( ( Re ` B ) + ( _i x. ( Im ` B ) ) ) = ( ( Re ` ( 1 x. B ) ) + ( _i x. ( Re ` ( -u _i x. B ) ) ) ) ) |
30 |
23 29
|
eqtrd |
|- ( B e. CC -> B = ( ( Re ` ( 1 x. B ) ) + ( _i x. ( Re ` ( -u _i x. B ) ) ) ) ) |
31 |
22 30
|
eqeqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( A = B <-> ( ( Re ` ( 1 x. A ) ) + ( _i x. ( Re ` ( -u _i x. A ) ) ) ) = ( ( Re ` ( 1 x. B ) ) + ( _i x. ( Re ` ( -u _i x. B ) ) ) ) ) ) |
32 |
14 31
|
syl5ibr |
|- ( ( A e. CC /\ B e. CC ) -> ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> A = B ) ) |
33 |
|
oveq2 |
|- ( A = B -> ( x x. A ) = ( x x. B ) ) |
34 |
33
|
fveq2d |
|- ( A = B -> ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) ) |
35 |
34
|
ralrimivw |
|- ( A = B -> A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) ) |
36 |
32 35
|
impbid1 |
|- ( ( A e. CC /\ B e. CC ) -> ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) <-> A = B ) ) |